Exercices

Exercice 1. Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, les familles suivantes sont-elles libres ou liées?

- 1. (f_1, f_2) avec $f_1: x \mapsto \sin x; f_2: x \mapsto \cos x;$
- 2. (f_0, f_1, \ldots, f_n) avec $f_i : x \mapsto (x x_0)^i$ où x_0 est fixé;
- 3. $(f_0, f_1, \ldots, f_n, \sin)$ avec $f_i : x \mapsto x^i$.

Exercice 2. Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer que :

- 1. la suite $(\operatorname{Ker}(f^n))_{n\in\mathbb{N}}$ est croissante pour l'inclusion.
- 2. Pour $i \in \mathbb{N}^*$, si $\operatorname{Ker}(f^i) = \operatorname{Ker}(f^{i+1})$, alors : $\forall j \geq i$, $\operatorname{Ker}(f^i) = \operatorname{Ker}(f^j)$.
- 3. Il existe $i \in \mathbb{N}^*$ tel que $\operatorname{Ker}(f^i) = \operatorname{Ker}(f^{i+1})$.
- 4. $\left(\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0_E\}\right) \Leftrightarrow \operatorname{Ker}(f^2) = \operatorname{Ker}(f)$.

Exercice 3. Soit E un \mathbb{K} -espace vectoriel, F et G des sous-espaces vectoriels de E. Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 4. Soit E, F et G des \mathbb{K} -espaces vectoriels de dimension finie, $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$.

- 1. Montrer que $\operatorname{rg}(v \circ u) \leqslant \operatorname{rg}(v)$, avec égalité si u est un isomorphisme.
- 2. On note \tilde{v} l'application linéaire induite par v de $\mathrm{Im}(u)$ dans $\mathrm{Im}(v \circ u)$. Montrer que \tilde{v} est bien définie et surjective.
- 3. En déduire que $rg(v \circ u) \leq rg(u)$.
- 4. Cas d'égalité?

Exercice 5. Soit \mathcal{A} une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$ et $M \in \mathcal{A}$. Montrer que si $M \in GL_n(\mathbb{K})$, alors $M^{-1} \in \mathcal{A}$.

Exercice 6. Soit p_1, \ldots, p_n des projecteurs d'un \mathbb{K} -espace vectoriel E ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) de dimension finie tels que $p_1 + \cdots + p_n = \mathrm{id}_E$.

- 1. Montrer que pour tout $i \in [1; n], \operatorname{rg}(p_i) = \operatorname{tr}(p_i)$.
- 2. Montrer que $E = \operatorname{Im}(p_1) \oplus \cdots \oplus \operatorname{Im}(p_n)$.

Exercice 7. Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang r, décomposée par blocs sous la forme :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

avec $A \in GL_r(\mathbb{K})$.

1. Montrer que pour tout vecteur colonne $Y \in \mathbb{K}^{n-r}$, il existe un vecteur colonne $X \in \mathbb{K}^r$ tel que :

$$M\begin{pmatrix} 0_r \\ Y \end{pmatrix} = M\begin{pmatrix} X \\ 0_{n-r} \end{pmatrix}.$$

2. En déduire que $D = CA^{-1}B$.

Exercice 8. On dit qu'un nombre réel est algébrique lorsqu'il est racine d'un polynôme non nul de $\mathbb{Q}[X]$.

Soit $a \in \mathbb{R}$ et $H_a = \text{Vect} (\{a^n; \text{ avec } n \in \mathbb{N}\})$ dans le \mathbb{Q} -espace vectoriel \mathbb{R} .

- 1. Montrer que a est algébrique si et seulement si il est racine d'un polynôme P non nul à coefficients entiers.
- 2. Montrer que a est algébrique si et seulement si H_a est de dimension finie.
- 3. Montrer que l'ensemble des nombres algébriques est un sous-corps de \mathbb{R} .
- 4. Montrer que $a = \sqrt{2} + \sqrt{3}$ est algébrique et déterminer un polynôme annulateur de a. Même question avec $a = \sqrt{2} + \sqrt{3} + \sqrt{6}$.

Exercice 9. Soit n > p deux entiers naturels non nuls, $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$. Déterminer $\det(AB)$.

Exercice 10. Soit $n \in \mathbb{N}^*$ et

$$A_n = \begin{pmatrix} 0 & 1 & \dots & 1 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -1 & \dots & -1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Calculer $det(A_n)$ en utilisant une relation de récurrence.

Exercice 11. Déterminant de Vandermonde. Soit $a_1, \ldots, a_k \in \mathbb{C}$, on pose :

$$V(a_1, \dots a_n) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & & & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{vmatrix}$$

On propose plusieurs méthodes pour calculer ce déterminant.

- 1. Par opérations élémentaires et relation de récurrence :
 - (a) Effectuer les opérations $C_k \leftarrow C_k a_n C_{k-1}$ pour k de n à 2.
 - (b) En déduire une relation de récurrence, puis la formule générale.
- 2. (a) Soit P un polynôme unitaire de degré n-1. Montrer que :

$$V(a_1, \dots a_n) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & P(a_1) \\ 1 & a_2 & a_2^2 & \dots & P(a_2) \\ \vdots & \vdots & & & \vdots \\ 1 & a_n & a_n^2 & \dots & P(a_n) \end{vmatrix}$$

- (b) En déduire une relation de récurrence à l'aide du polynôme $P = \prod_{k=1}^{n-1} (X a_i)$, puis la formule générale.
- 3. On suppose a_1, \ldots, a_n distincts et on pose pour tout $x \in \mathbb{C}, P(x) = V(a_1, \ldots, a_{n-1}, x)$.
 - (a) Montrer que P est une fonction polynomiale de degré inférieur à n-1 et déterminer le coefficient de X^{n-1} du polynôme P.
 - (b) Déterminer les racines de P et en déduire $V(a_1, \ldots, a_n)$.

Exercice 12. Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice à diagonale strictement dominante, c'est à dire :

$$\forall i \in [1; n], |a_{i,i}| > \sum_{j \neq i} |a_{i,j}|,$$

montrer que A est inversible.

Exercice 13.

1. Montrer que pour tout $n \in \mathbb{N}$, il existe un unique polynôme $T_n \in \mathbb{R}_n[X]$ tel que :

$$\forall x \in \mathbb{R}, T_n(\cos x) = \cos(nx).$$

Préciser le degré et le coefficient dominant de T_n .

2. Pour $a_0, \ldots, a_n \in \mathbb{R}^{n+1}$, calculer le déterminant :

$$D = \begin{vmatrix} 1 & \cos(a_0) & \cos(2a_0) & \dots & \cos(na_0) \\ 1 & \cos(a_1) & \cos(2a_1) & \dots & \cos(na_1) \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & \cos(a_n) & \cos(2a_n) & \dots & \cos(na_n) \end{vmatrix}$$

Indication : On pourra se ramener à un déterminant de Vandermonde.

Exercice 14. Soit

$$A = \begin{pmatrix} 3 & 1 & -2 \\ 3 & 5 & -6 \\ 1 & 1 & 0 \end{pmatrix}.$$

- 1. Déterminer le polynôme minimal de *A*. **Indication** : On cherchera un polynôme annulateur de degré 2.
- 2. En déduire que A est inversible et calculer son inverse.
- 3. Exprimer A^k en fonction de A et I_3 pour tout $k \in \mathbb{N}$.

Banque CCINP

Exercice 15 (CCINP 60). Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M) = AM.

- 1. Déterminer une base de Ker f.
- 2. f est-il surjectif?
- 3. Déterminer une base de Im f.
- 4. A-t-on $\mathcal{M}_2(\mathbb{R}) = \operatorname{Ker} f \oplus \operatorname{Im} f$?

Exercice 16 (CCINP 62). Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} . Soit $f \in \mathcal{L}(E)$ tel que $f^2 - f - 2\mathrm{Id} = 0$.

- 1. Prouver que f est bijectif et exprimer f^{-1} en fonction de f.
- 2. Prouver que $E = \text{Ker}(f + \text{Id}) \oplus \text{Ker}(f 2\text{Id})$:
 - (a) en utilisant le lemme des noyaux.
 - (b) sans utiliser le lemme des noyaux.
- 3. Dans cette question, on suppose que E est de dimension finie. Prouver que Im(f+Id)=Ker(f-2Id).

Exercice 17 (CCINP 64).

Soit f un endomorphisme d'un espace vectoriel E de dimension finie n.

- 1. Démontrer que : $E = \operatorname{Im} f \oplus \operatorname{Ker} f \Longrightarrow \operatorname{Im} f = \operatorname{Im} f^2$.
- 2. (a) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Ker} f = \operatorname{Ker} f^2$.
 - (b) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \Longrightarrow E = \operatorname{Im} f \oplus \operatorname{Ker} f$.

Exercice 18 (CCINP 85).

- 1. Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.
 - (a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P(X) dans la base $\left(1, X-a, (X-a)^2, \cdots, (X-a)^n\right)$.
 - (b) Soit $r \in \mathbb{N}^*$. En déduire que : a est une racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(a) \neq 0$ et $\forall k \in [0, r-1]$, $P^{(k)}(a) = 0$.
- 2. Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.

Exercice 19 (CCINP 87).

Soient a_0, a_1, \dots, a_n , n+1 réels deux à deux distincts.

1. Montrer que si b_0, b_1, \dots, b_n sont n+1 réels quelconques, alors il existe un unique polynôme P vérifiant

$$\deg P \leqslant n \text{ et } \forall i \in [0, n], \ P(a_i) = b_i.$$

2. Soit $k \in [0, n]$.

Expliciter ce polynôme P, que l'on notera L_k , lorsque :

$$\forall i \in [0, n], \quad b_i = \begin{cases} 0 & \text{si} \quad i \neq k \\ 1 & \text{si} \quad i = k \end{cases}$$

3. Prouver que $\forall p \in \llbracket 0, n \rrbracket$, $\sum_{k=0}^{n} a_k^p L_k = X^p$.

Exercice 20 (CCINP 90).

 \mathbb{K} désigne le corps des réels ou celui des complexes. Soient a_1, a_2, a_3 trois scalaires distincts donnés de \mathbb{K} .

- 1. Montrer que $\Phi: \mathbb{K}_2[X] \longrightarrow \mathbb{K}^3$ est un isomorphisme d'espaces vectoriels.
- 2. On note (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et on pose $\forall k \in \{1, 2, 3\}, L_k = \Phi^{-1}(e_k)$.
 - (a) Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
 - (b) Exprimer les polynômes L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
- 3. Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- 4. **Application** : on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1).

Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points $A,\,B$ et C.