Chapitre 3

Compléments d'algèbre linéaire

Dans ce chapitre, $\mathbb K$ désigne un sous-corps de $\mathbb C$ et E un $\mathbb K\text{-espace}$ vectoriel.

I Somme de sous-espaces vectoriels

I. A Somme de deux sous-espaces vectoriels (rappels)

Définition 1.1

Soit F et G des sous-espaces vectoriels de E.

• Somme de F et G:

$$F + G = \{x_F + x_G; \text{ avec } x_F \in F, x_G \in G\}.$$

- La somme F+G est dite directe lorsque pour tout $x \in F+G$, il existe un unique couple $(x_F, x_G) \in F \times G$ tel que $x = x_F + x_G$. Dans ce cas la somme est notée $F \oplus G$.
- Les sous-espaces vectoriels F et G sont supplémentaires dans E lorsque :

$$E = F \oplus G$$
.

(Proposition 1.2)

Soit F et G des sous-espaces vectoriels de E.

- F + G est le plus petit sous-espace vectoriel de E qui contient F et G.
- La somme F + G est directe si et seulement si
- F et G sont supplémentaires si et seulement si tout vecteur $x \in E$ peut s'écrire de manière unique sous la forme $x = x_F + x_G$ avec $x_F \in F$ et $x_G \in G$.

Remarque 1.3 : Si on considère l'application $\Phi: \begin{vmatrix} F \times G & \longrightarrow & E \\ (x,y) & \longmapsto & x+y \end{vmatrix}$, alors

- Φ est une application linéaire et $\operatorname{Im}(\Phi) =$
- F et G sont en somme directe si et seulement si Φ est
- F et G sont supplémentaires dans E si et seulement si Φ est

Proposition 1.4 (Formule de Grassmann)

Si F et G sont de dimension finie, alors :

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

En particulier, $\dim(F+G) \leq \dim(F) + \dim(G)$ avec égalité si et seulement si F et G sont en somme directe.

Proposition 1.5

Si \overline{E} est de dimension finie et F et G des sous-espaces vectoriels de E, alors sont équivalents :

- F et G sont supplémentaires dans E;
- $F \cap G = \{0\}$ et $\dim(F) + \dim(G) = \dim(E)$;
- F + G = E et $\dim(F) + \dim(G) = \dim(E)$.

Proposition 1.6

Si E est de dimension finie et F et G des sous-espaces vectoriels de E, les espaces F et G sont supplémentaires dans E si et seulement si la concaténation d'une base de F et d'une base de G forme une base de E, dite adaptée à la somme directe.

Remarque 1.7 : On peut ainsi construire des sous-espaces vectoriels supplémentaires à partir d'une base de E.

(Proposition 1.8)

Si E est de dimension finie, alors tout sous-espace vectoriel de E admet un supplémentaire. Une base adaptée à cette somme directe et également dite adaptée au sous-espace vectoriel F.

I. B Sommes d'une famille de sous-espaces vectoriels

Définition 1.9

Soit $E_1, \ldots, \overline{E_p}$ des sous-espaces vectoriels de E.

On appelle somme des E_1, \ldots, E_p et on note $\sum_{i=1}^p E_i$ l'ensemble des vecteurs de

E de la forme $x = \sum_{i=1}^{p} x_i$ avec pour tout $i \in [1; p], x_i \in E_i$.

Remarque 1.10 : Si F, G et H sont trois sous-espaces de E alors (F+G)+H=F+G+H=F+(G+H).

Remarque 1.11: Considérons l'application:

$$\Phi : \prod_{i=1}^{p} E_{i} \longrightarrow E$$

$$(x_{1}, \dots, x_{p}) \longmapsto \sum_{i=1}^{p} x_{i}$$

Alors Φ est linéaire et $\operatorname{Im}(\Phi) =$

Proposition 1.12

Soit E_1, \ldots, E_n des sous-espaces vectoriels de E.

La somme $\sum_{i=1}^{r} E_i$ est le plus petit sous-espace vectoriel de E qui contient tous les E_i pour $i \in [1; p]$.

Méthode 1.13 (pour montrer que $\sum E_i \subset G$)

Si
$$\begin{cases} \forall i \in [1; p], E_i \subset G; \\ G \text{ est un sous-espace vectoriel de } E; \end{cases}$$

alors: $\sum_{i=1}^{p} E_i \subset G$.

(Définition 1.14)

Soit E_1, \ldots, E_p des sous-espaces vectoriels de E. La somme $\sum_{i=1}^p E_i$ est dite **directe** lorsque pour tout $x \in \sum_{i=1}^p E_i$, il existe un unique

$$p$$
-uplet $(x_1, \ldots, x_p) \in \prod_{i=1}^p E_i$ tel que $x = \sum_{i=1}^p x_i$.

Dans ce cas, la somme $\sum_{i=1}^{p} E_i$ est notée $\bigoplus_{i=1}^{p} E_i$.

Remarque 1.15: La somme $\sum_{i=1}^{p} E_i$ est directe si et seulement si Φ est injective.

Théorème 1.16

Soit E_1, \ldots, E_n des sous-espaces vectoriels de E.

La somme $\sum_{i=1}^{p} E_i$ est directe si et seulement si :

$$\forall (x_1, \dots, x_p) \in \prod_{i=1}^p E_i, \quad \sum_{i=1}^p x_i = 0 \Rightarrow \forall i \in [1; p], \ x_i = 0.$$

Proposition 1.17

Soit E_1, \ldots, E_p des sous-espaces vectoriels de E.

La somme $\sum_{i=1}^{p} E_i$ est directe si et seulement si :

$$\begin{cases} \text{la somme } \sum_{i=1}^{p-1} E_i \text{ est directe} \\ \left(\bigoplus_{i=1}^{p-1} E_i\right) \cap E_p = \{0\} \,. \end{cases}$$

Attention : Pour $p \ge 3$, il ne suffit pas que les intersections deux à deux des E_i soient réduites à $\{0_E\}$ pour que la somme des E_i soit directe.

Contre exemple 1.18 : Pour $E = \mathbb{R}^2$, F =, les sous-espaces vectoriels F, G, H sont deux à deux en somme directe, mais la somme F + G + H n'est pas directe.

(Définition 1.19)

Soit E un \mathbb{K} -espace vectoriel et E_1, \ldots, E_p des sous-espaces vectoriels de E tels que $E = \bigoplus_{i=1}^{p} E_{i}$. On appelle **projecteurs associés** à cette somme directe les p projecteurs sur l'un de ces sous-espaces vectoriels parallèlement à la somme (directe) des autres.

Théorème 1.20

Soit E_1, \ldots, E_p des sous-espaces vectoriels de E tels que $E = \bigoplus_{i=1}^p E_i$ et pour tout $i \in [1; p], \varphi_i \in \mathcal{L}(E_i, F)$, alors il existe une unique application $\varphi \in \mathcal{L}(E, F)$ telle que $\varphi_{|E|} = \varphi_i$ pour tout $i \in [1; p]$. que $\varphi_{|E_i} = \varphi_i$ pour tout $i \in [1; p]$.

Autrement dit : si $E = \bigoplus_{i=1}^{p} E_i$, on peut définir une application linéaire de E dans F en la définissant sur chacun des E_i .

I. C En dimension finie

Proposition 1.21

Soit E_1, \ldots, E_n des sous-espaces vectoriels de E.

Si E est de dimension finie, on a $E = \bigoplus^{P} E_i$ si et seulement si la concaténation d'une base de chacun des E_i pour $i \in [1; p]$ forme une base de E.

Une telle base est appelée adaptée à la décomposition en somme directe $E = \bigoplus_{i=1}^{p} E_i.$

Remarque 1.22 : On peut ainsi former une décomposition en somme directe à partir d'une base de E.

Théorème 1.23

Soit E_1, \ldots, E_p des sous-espaces vectoriels de E. Si E_1, \ldots, E_p sont de dimension finie, alors :

$$\dim\left(\sum_{i=1}^{p} E_i\right) \leqslant \sum_{i=1}^{p} \dim(E_i)$$

avec égalité si et seulement si la somme est directe.

II Matrices définies par blocs

Soit $A = (a_{i,j})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant q}} \in \mathcal{M}_{p,q}(\mathbb{K}).$

Soit $(p_1, p_2) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que $p_1 + p_2 = p$ et $(q_1, q_2) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que $q_1 + q_2 = q$. On définit quatre sous-matrices de $A : A_{1,1} = (a_{i,j})_{\substack{1 \leq i \leq p_1 \\ 1 \leq j \leq q_1}} \in \mathcal{M}_{p_1,q_1}(\mathbb{K}),$

$$A_{1,2} = (a_{i,j}) \underset{\substack{1 \le i \le p_1 \\ q_1 + 1 \le j \le q}}{\underset{1 \le j \le q_1}{\text{1}}} \in \mathcal{M}_{p_1,q_2}(\mathbb{K}), A_{2,1} = (a_{i,j})_{\substack{p_1 + 1 \le i \le p \\ 1 \le j \le q_1}} \in \mathcal{M}_{p_2,q_1}(\mathbb{K}) \text{ et }$$

$$A_{2,2} = (a_{i,j})_{\substack{p_1 + 1 \le i \le p \\ q_1 + 1 \le j \le q_2}} \in \mathcal{M}_{p_2,q_2}(\mathbb{K}).$$

On peut alors écrire $A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$ et on dit que la matrice A est définie par blocs.

Exemple 2.1: Soit
$$M = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix}$$
 avec $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 5 \end{pmatrix}$, $D = \begin{pmatrix} 7 \end{pmatrix}$. Alors

$$M = 1$$

Interprétation: Soit A la matrice d'une application linéaire u d'un espace vectoriel E dans un espace vectoriel F relativement à des bases \mathcal{B} pour E et \mathcal{B}' pour F. En séparant la famille \mathcal{B} en deux familles \mathcal{B}_1 des p_1 premiers vecteurs et \mathcal{B}_2 des autres vecteurs de B, on obtient les bases de deux sous-espaces vectoriels E_1 et E_2 supplémentaires dans E. De même pour $F = F_1 \oplus F_2$ et π_1, π_2 les projecteurs associés. Alors $A_{i,j}$ est la matrice de $\pi_i \circ u|_{E_i}$ dans les bases \mathcal{B}_j et \mathcal{B}'_i .

Proposition 2.2

Soit A et B deux éléments de $\mathcal{M}_{p,q}(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

On suppose que A et B sont définies par blocs selon le même découpage $(p = p_1 + p_2, q = q_1 + q_2)$:

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ \hline A_{2,1} & A_{2,2} \end{pmatrix} \text{ et } B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ \hline B_{2,1} & B_{2,2} \end{pmatrix}.$$

Alors:

$$A + B = \left(\begin{array}{c|c} A_{1,1} + B_{1,1} & A_{1,2} + B_{1,2} \\ \hline A_{2,1} + B_{2,1} & A_{2,2} + B_{2,2} \end{array}\right)$$

et:

$$\lambda A = \left(\begin{array}{c|c} \lambda A_{1,1} & \lambda A_{1,2} \\ \hline \lambda A_{2,1} & \lambda A_{2,2} \end{array}\right)$$

Proposition 2.3

Soit $A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ \hline A_{2,1} & A_{2,2} \end{pmatrix} \in \mathcal{M}_{p,q}(\mathbb{K})$ définie par blocs, alors :

$$A^{\top} = \left(\begin{array}{c|c} A_{1,1}^{\top} & A_{2,1}^{\top} \\ \hline A_{1,2}^{\top} & A_{2,2}^{\top} \end{array}\right)$$

Proposition 2.4

Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,r}(\mathbb{K})$.

On suppose que A et B sont définies par blocs et que le découpage en colonnes de A est le même que le découpage en lignes de B ($q=q_1+q_2$). Alors

$$A \times B = \left(\begin{array}{c|c} A_{1,1} & A_{1,2} \\ \hline A_{2,1} & A_{2,2} \end{array}\right) \times \left(\begin{array}{c|c} B_{1,1} & B_{1,2} \\ \hline B_{2,1} & B_{2,2} \end{array}\right)$$
$$= \left(\begin{array}{c|c} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ \hline A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{array}\right).$$

Exemple 2.5 : Déterminer une matrice N définie par bloc telle le produit $M \times N$ puisse être calculé par blocs.

Attention : On peut faire les calculs sur les matrices par blocs de la même manière que si c'était des matrices dont les coefficients sont eux-même des matrices. Mais la multiplication entre deux blocs n'est pas commutative.

On peut généraliser ceci à un nombre quelconque de blocs :

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,m} \\ \hline A_{2,1} & A_{2,2} & \cdots & A_{2,m} \\ \hline \vdots & \vdots & \cdots & \vdots \\ \hline A_{n,1} & A_{n,2} & \cdots & A_{n,m} \end{pmatrix}$$

Pour le produit AB, le découpage selon les colonnes de A doit être le même que le découpage selon les lignes de B.

Remarque 2.6: On généralise également les opérations élémentaires sur les lignes et les colonnes (échange, multiplication par un scalaire, transvection). En particulier une transvection $(L_i \leftarrow L_i + aL_i)$ sur des blocs de p_i lignes correspond à p_i transvections sur les lignes de la matrice. Elle laisse donc le déterminant invariant.

Lorsque n = m, on appelle matrice triangulaire (supérieure) par blocs toute matrice de la forme :

$$\begin{pmatrix}
A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\
0 & A_{2,2} & \cdots & A_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & A_{n,n}
\end{pmatrix}$$

et matrice diagonale par blocs toute matrice de la forme :

$$\begin{pmatrix} A_{1,1} & 0 & \cdots & 0 \\ \hline 0 & A_{2,2} & \cdots & \vdots \\ \hline \vdots & \vdots & \ddots & 0 \\ \hline 0 & \cdots & 0 & A_{n,n} \end{pmatrix}.$$

Théorème 2.7

Si
$$A = \begin{pmatrix} A_1 & \star & \cdots & \star \\ \hline 0 & A_2 & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \star \\ \hline 0 & \cdots & 0 & A_n \end{pmatrix}$$
 est une matrice triangulaire par blocs telle que

pour tout $k \in [1; p]$, A_k est une matrice carrée, alors : $\det(A) = \prod_{k=1}^p \det(A_k)$.

Sous-espaces stables

(Définition 3.1)

Soit E un \mathbb{K} -espace vectoriel et φ un endomorphisme de E.

- On dit qu'un sous-espace vectoriel F de E est **stable par** φ lorsque : $\varphi(F) \subset F$,
- 1.e.:

 L'application $\tilde{\varphi}: \begin{vmatrix} F & \longrightarrow & F \\ u & \longmapsto & \varphi(u) \end{vmatrix}$ est alors un endomorphisme de F appelé endomorphisme induit par φ sur F.

Exemples 3.2: • Quelque soit $\varphi \in \mathcal{L}(E)$, E et $\{0_E\}$ sont stables par φ .

• Soit $E = \mathbb{K}[X]$ et φ l'application de dérivation (linéaire sur E). Déterminer des sous-espaces vectoriels non triviaux stables par φ .

Proposition 3.3

Soit E un \mathbb{K} -espace vectoriel et u et v deux endomorphismes de E qui commutent c'est-à-dire tels que $u \circ v = v \circ u$.

Alors les sous-espaces vectoriels Ker(v) et Im(v) sont stables par u.

Remarque 3.4: En particulier Ker(u) et Im(u) sont stables par u.

Proposition 3.5

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$, F un sous-espace vectoriel de E de dimension $p \in \mathbb{N}^*$ et $\varphi \in \mathcal{L}(E)$.

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E adaptée à F.

Les assertions suivantes sont équivalentes :

- F est stable par φ
- la matrice de φ dans la base $\mathcal B$ est triangulaire par blocs : $\left(\begin{array}{c|c}A&B\\\hline 0&C\end{array}\right)$ où

Dans ce cas, A est la matrice de l'endomorphisme induit par φ sur F dans la base $(e_1,\ldots,e_n).$

Théorème 3.6

Soit E_1, \ldots, E_p des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel de dimension finie E tels que $E = \bigoplus_{i=1}^{P} E_i$ et \mathcal{B} une base de E adaptée à cette décomposition.

Sont équivalents :

- E_1, \ldots, E_p sont stables par φ
- la matrice de φ dans la base \mathcal{B} est diagonale par blocs :

$$\begin{pmatrix}
A_1 & 0 & \cdots & 0 \\
0 & A_2 & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
\hline
0 & \cdots & 0 & A_p
\end{pmatrix}$$
 où pour tout $i \in \{1, \dots, p\}, A_i \in \mathcal{M}_{\dim E_i}(\mathbb{K}).$

Dans ce cas, pour tout $i \in \{1, ..., p\}$, A_i est la matrice de $\varphi_{|E_i}$ dans la base \mathcal{B}_i .

Remarque 3.7: Donner un condition nécessaire et suffisante pour que la matrice de φ dans un certaine base soit de la forme :

$$\begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,p} \\ \hline 0 & A_{2,2} & \cdots & A_{2,p} \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline 0 & \cdots & 0 & A_{p,p} \end{pmatrix}$$

Proposition 3.8 (droite stable)

Soit E un \mathbb{K} -espace vectoriel et u un endomorphisme de E. Une droite vectorielle D est stable par u si et seulement si il existe un scalaire λ tel que pour tout $x \in D, u(x) = \lambda x.$

Polynômes d'un endomorphisme, d'une matrice carrée

IV. A Polynômes d'un endomorphisme

Définition 4.1

Soit $u \in \mathcal{L}(E)$ et $P = \sum_{k=0}^{p} a_k X^k \in \mathbb{K}[X]$, on note :

$$P(u) = \sum_{k=0}^{p} a_k u^k \in \underline{\qquad}.$$

Remarque 4.2 : Le polynôme d'endomorphisme P(u) est

Théorème 4.3

Soit $u \in \mathcal{L}(E)$. L'application $P \mapsto P(u)$ est un morphisme d'algèbre de $\mathbb{K}[X]$ dans $\mathcal{L}(E)$. Son image, notée $\mathbb{K}[u]$, est une sous algèbre commutative de $\mathcal{L}(E)$.

Attention: • $PQ(u) = P(u) \circ Q(u) = Q(u) \circ P(u)$ et pas P(Q(u));

• pour $x \in E$, l'écriture P(u)(x) a un sens car $P(u) \in \mathcal{L}(E)$; mais l'écriture P(u(x)) n'a pas de sens : $u(x) \in E$.

IV. B Idéal annulateur

Définition 4.4

Soit $u \in \mathcal{L}(E)$. Le novau du morphisme d'algèbre $P \mapsto P(u)$ est l'ensemble des polynômes $P \in \mathbb{K}[X]$ tels que P(u) = 0, c'est un idéal de $\mathbb{K}[X]$ appelé idéal annulateur de u. Les polynômes de cet idéal annulateur sont appelés polynômes annulateurs de u.

Exemples 4.5 : • Soit $p \in \mathcal{L}(E)$, déterminer un polynôme annulateur de P.

• Soit $D \in \mathcal{L}(\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R}))$ définie par D(f) = f'. Montrer que le polynôme nul est le seul polynôme annulateur de D.

IV. C En dimension finie

Définition/Proposition 4.6

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

Alors l'idéal annulateur de u est non nul et il existe un unique polynôme unitaire générateur de l'idéal annulateur de u, appelé **polynôme minimal** de u et noté μ_u ou π_u .

Remarques 4.7 : • Tout polynôme annulateur de u est un multiple du polynôme minimal de $u: \mu_u$;

- μ_u est le seul polynôme annulateur unitaire de degré minimal;
- $\mu_u(u) = 0_{\mathcal{L}(E)}$;
- $\deg(\mu_u) \geqslant 1$.

Définition 4.8

Soit $M \in \mathcal{M}_n(\mathbb{K})$. Pour tout $P = \sum_{k=0}^p a_k X^k \in \mathbb{K}[X]$, on note :

$$P(M) = \sum_{k=0}^{p} a_k M^k \in \underline{\hspace{1cm}}$$

L'application $P \mapsto P(M)$ est un morphisme d'algèbre de $\mathbb{K}[X]$ dans $\mathcal{M}_n(\mathbb{K})$. Son image, notée $\mathbb{K}[M]$, est une sous algèbre commutative de $\mathcal{M}_n(\mathbb{K})$. Son noyau est l'ensemble des polynômes $P \in \mathbb{K}[X]$ tels que P(M) = 0, c'est un idéal de $\mathbb{K}[X]$ appelé **idéal annulateur** de M. Les polynômes de cet idéal annulateur sont appelés **polynômes annulateurs** de M et on appelle **polynôme minimal** de M, et on note μ_M (ou π_M) l'unique polynôme unitaire générateur de l'idéal annulateur de M.

Exemple 4.9 : Polynôme minimal annulateur de $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Rappel : Si \mathcal{B} est une base de E de dimension n, alors : $u \mapsto \operatorname{Mat}_{\mathcal{B}}(u)$ est un isomorphisme d'algèbre de $\mathcal{L}(E)$ dans $\mathcal{M}_n(\mathbb{K})$.

Proposition 4.10

Soit \mathcal{B} est une base de E de dimension finie, $u \in \mathcal{L}(E)$ et $A = \operatorname{Mat}_{\mathcal{B}}(u)$, alors :

- $\forall P \in \mathbb{K}[X], \operatorname{Mat}_{\mathcal{B}}(P(u)) = P(A);$
- les polynômes annulateurs de u sont les polynômes annulateurs de A;
- $\mu_u = \mu_A$.

Corollaire 4.11

Deux matrices semblables ont le même polynôme minimal.

Théorème 4.12

Soit E est un \mathbb{K} -espace vectoriel de dimension finie, $u\in\mathcal{L}(E)$ et d le degré du polynôme minimal de u.

Alors la famille $(u^k)_{0 \le k \le d-1}$ est une base de $\mathbb{K}[u]$.

IV. D Application: calcul des puissances d'une matrice

Méthode 4.13

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et μ_A son polynôme minimal. On effectue la division euclidienne de X^k par $\mu_A : X^k = \mu_A \times Q + R$ et on évalue en $A : A^k = R(A)$.

Exemple 4.14 : Polynôme minimal et puissances de $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Remarque 4.15: On peut également calculer les puissances de cette matrice à l'aide de _____.

IV. E Exemple fondamental: matrice compagnon (HP)

Le résultat suivant n'est pas au programme, mais c'est un exercice classique.

Proposition 4.16

Tout polynôme unitaire $P=X^n+\sum\limits_{i=0}^{n-1}a_iX^i$ est le polynôme minimal d'au moins une matrice, sa matrice compagnon :

$$C = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & \vdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

IV. F Lemme de décomposition des noyaux

Théorème 4.17 (Lemme de décomposition des noyaux)

Soit $P_1, \ldots, P_r \in \mathbb{K}[X]$ deux à deux premiers entre eux, $P = \prod_{i=1}^r P_i$ et $u \in \mathcal{L}(E)$. Alors:

$$\operatorname{Ker}\left(P(u)\right) = \bigoplus_{i=1}^{r} \operatorname{Ker}\left(P_{i}(u)\right).$$