Exercices

Exercice 1. Montrer que $\exp: \mathbb{C} \longrightarrow \mathbb{C}^*$ est un morphisme de groupe de $(\mathbb{C}, +)$ dans (\mathbb{C}^*, \times) puis déterminer son image et son noyau.

Exercice 2. Soit G un groupe, on appelle centre de G, et on note C(G), l'ensemble des éléments qui commutent avec tous les éléments du groupe. C'est à dire :

$$C(G) = \{x \in G \mid \forall y \in G, xy = yx\}.$$

- 1. Montrer que C(G) est un sous-groupe de G.
- 2. Soit $n \ge 3$, montrer que le centre du groupe symétrique S_n est réduit à {id}. Indication : on pourra raisonner par l'absurde.

Exercice 3. Le but de cet exercice est de déterminer tous les morphismes du groupe symétrique d'ordre n (S_n, \circ) dans (\mathbb{C}^*, \times) . Soit φ un morphisme de (S_n, \circ) dans (\mathbb{C}^*, \times) .

- 1. Montrer que pour toute transposition τ , $\varphi(\tau) \in \{-1, 1\}$.
- 2. Montrer que pour tout $k \in [2; n], \varphi(1 k) = \varphi(1 2)$.
- 3. Montrer que pour toute transposition $\tau, \varphi(\tau) = \varphi(1 \ 2)$.
- 4. En déduire φ .
- 5. Conclure.

Exercice 4. Un sous-groupe H d'un groupe (G,\cdot) est dit distingué lorsque :

$$\forall x \in H, \forall a \in G, axa^{-1} \in H.$$

- 1. Montrer que le noyau d'un morphisme de groupes au départ de (G,\cdot) est distingué.
- 2. Soit H un sous-groupe de (G,\cdot) distingué et K un sous-groupe de $(G,\cdot).$ Montrer que l'ensemble

$$HK = \{xy; \text{ avec } x \in H, y \in K\}$$

est un sous-groupe de (G, \cdot) .

Exercice 5. Soit G un groupe cyclique de cardinal n.

- 1. Montrer que tous les sous-groupes de ${\cal G}$ sont cycliques.
- 2. Soit d un diviseur de n. Montrer que G possède un unique sous-groupe de cardinal d.

Exercice 6. Soit (G,\cdot) un groupe. Pour $a \in G$, on note $f_a: G \longrightarrow G, x \mapsto axa^{-1}$.

- 1. Montrer que pour tout $a \in G$, f_a est un automorphisme de G.
- 2. Montrer que $\varphi:(G,\cdot)\longrightarrow (\operatorname{Aut}(G),\circ), a\mapsto f_a$ est un morphisme de groupes.
- 3. Déterminer le noyau de φ .

Exercice 7. Soit G un groupe commutatif, a et b des éléments de G d'ordres respectifs m et n.

- 1. Montrer que si $m \wedge n = 1$, alors ab est d'ordre mn.
- 2. Qu'en est-il si G n'est pas supposé commutatif?

Exercice 8. Théorème de Lagrange

Soit G un groupe fini de cardinal n et H un sous-groupe de G.

1. Montrer que la relation $\mathcal R$ définie sur G par :

$$x\mathcal{R}y \Leftrightarrow xy^{-1} \in H$$

est une relation d'équivalence.

- 2. Montrer que $Hx = \{hx; \text{ avec } h \in H\}$ est la classe d'équivalence de x.
- 3. Soit $x \in G$ fixé et $f: H \longrightarrow Hx, h \mapsto hx$. Montrer que f est bijective.
- 4. Montrer que toutes les classes d'équivalence ont le même cardinal.
- 5. Montrer que $Card(H) \mid n$.
- 6. Montrer que l'ordre de tout élément de G divise le cardinal n du groupe G.

Exercice 9. Montrer que tout groupe dont le cardinal est premier est un groupe cyclique et préciser ses éléments générateurs.

Exercice 10. Les groupes $(\mathbb{Z}/8\mathbb{Z}, +)$ et $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, +)$ sont-ils isomorphes?

Exercice 11. Soit p un nombre premier, on note :

$$\mathcal{G}_p = \left\{ z \in \mathbb{C} \mid \exists k \in \mathbb{N}, z^{(p^k)} = 1 \right\}$$

et pour tout $k \in \mathbb{N}$, on note :

$$V_k = \mathbb{U}_{p^k} = \left\{ z \in \mathbb{C} \mid z^{(p^k)} = 1 \right\}.$$

- 1. (a) Montrer que V_k est un sous-groupe de (\mathbb{C}^*, \times) dont on précisera le cardinal.
 - (b) Montrer que la suite $(V_k)_{k\in\mathbb{N}}$ est strictement croissante pour l'inclusion.
- 2. (a) Montrer que $\mathcal{G}_p = \bigcup_{k \in \mathbb{N}} V_k$.
 - (b) Montrer que \mathcal{G}_p est un sous-groupe de (\mathbb{C}^*, \times) .
- 3. Montrer que si $z \in V_{k+1} \setminus V_k$, alors z est générateur de V_{k+1} .
- 4. Soit H un sous-groupe de \mathcal{G}_p tel que : $\forall k \in \mathbb{N}, H \neq V_k$.
 - (a) Montrer que : $\forall k \in \mathbb{N}, H \not\subset V_k$. Indication : on pourra raisonner par l'absurde.
 - (b) Montrer que : $\forall k \in \mathbb{N}, V_k \subset H$.
 - (c) En déduire que les sous-groupes propres de \mathcal{G}_p sont cycliques et qu'aucun d'entre eux n'est maximal pour l'inclusion.
- 5. Montrer que \mathcal{G}_p n'est pas engendré par une partie finie.