COMPLÉMENTS D'ALGÈBRE LINÉAIRE

Cours

Dans tout ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

I. COMPLÉMENTS SUR LES MATRICES

A. Trace d'une matrice carrée

Dans ce paragraphe, n désigne un entier naturel non nul.

Définition 1

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$.

On appelle $trace\ de\ A$ et on note tr(A) la somme des cœfficients diagonaux de la matrice A, c'est-à-dire :

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i}.$$

Exemple 1: Calculer la trace de $A = \begin{pmatrix} 3 & 2 & -2 \\ 3 & -1 & 1 \\ -1 & 0 & -2 \end{pmatrix}$ et donner $\operatorname{tr}(I_n)$ pour tout $n \in \mathbb{N}^*$.

Proposition 2

- ▶ L'application tr: $\mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ est une forme linéaire.
- Pour tout $A \in \mathcal{M}_n(\mathbb{K})$, on a $\operatorname{tr}(A^{\mathsf{T}}) = \operatorname{tr}(A)$.
- Pour tout $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$, on a $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Attention, en général, $tr(AB) \neq tr(A)tr(B)$.

Exemple 2 : Déterminer deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ telles que $\operatorname{tr}(AB) \neq \operatorname{tr}(A)\operatorname{tr}(B)$.

Exemple 3: Montrer qu'il n'existe pas de matrices A et B de $\mathcal{M}_n(\mathbb{K})$ telles que $AB - BA = I_n$.

Exemple 4: Déterminer la dimension de Ker(tr) et montrer que $\mathcal{M}_n(\mathbb{K}) = \text{Ker}(\text{tr}) \oplus \text{Vect}(I_n)$.

B. Matrices par blocs

Soit
$$(p,q) \in (\mathbb{N}^*)^2$$
. Soit $A = (a_{i,j})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}} \in \mathcal{M}_{p,q}(\mathbb{K})$.

Soit $(p_1, p_2) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que $p_1 + p_2 = p$ et $(q_1, q_2) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que $q_1 + q_2 = q$.

On définit quatre sous-matrices de $A: A_{1,1} = (a_{i,j})_{\substack{1 \le i \le p_1 \\ 1 \le j \le q_1}} \in \mathcal{M}_{p_1,q_1}(\mathbb{K}), \ A_{1,2} = (a_{i,j})_{\substack{1 \le i \le p_1 \\ q_1+1 \le j \le q}} \in \mathcal{M}_{p_1,q_2}(\mathbb{K}), A_{2,1} = (a_{i,j})_{\substack{p_1+1 \le i \le p \\ 1 \le j \le q_1}} \in \mathcal{M}_{p_2,q_2}(\mathbb{K}).$

On peut alors écrire $A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$ et on dit que la matrice A est définie par blocs.

Exemple 5 : On pose $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$, $C = I_3$, $D = 0_{3,2}$ et $M = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix}$. Donner explicitement M.

Proposition 3 (Transposition)

Soit A une matrice de $\mathcal{M}_{p,q}(\mathbb{K})$ définie par blocs : $A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$.

On a:

$$A^{\mathsf{T}} = \left(\begin{array}{c|c} A_{1,1}^{\mathsf{T}} & A_{2,1}^{\mathsf{T}} \\ \hline A_{1,2}^{\mathsf{T}} & A_{2,2}^{\mathsf{T}} \end{array} \right).$$

Exemple 5 (suite): Pour la matrice M définie ci-dessus, calculer M^{T} .

Proposition 4 (Combinaison linéaire)

Soit A et B deux matrices de $\mathcal{M}_{p,q}(\mathbb{K})$, définies par blocs selon le même découpage $(p=p_1+p_2,q=q_1+q_2)$:

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$$
 et $B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$.

Alors pour tout $\lambda \in \mathbb{K}$, on a $\lambda A + B = \left(\frac{\lambda A_{1,1} + B_{1,1} \mid \lambda A_{1,2} + B_{1,2}}{\lambda A_{2,1} + B_{2,1} \mid \lambda A_{2,2} + B_{2,2}} \right)$.

Proposition 5 (*Produit*)

Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,r}(\mathbb{K})$.

On suppose que A et B sont définies par blocs et que le découpage en colonnes de A est le même que le découpage en lignes de B ($q = q_1 + q_2$).

Alors
$$AB = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} = \begin{pmatrix} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{pmatrix}.$$

Exemple 6 : On pose
$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
. Déterminer A^n pour tout $n \in \mathbb{Z}$.

On peut généraliser ceci à un nombre quel conque de blocs : $A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,m} \\ \hline A_{2,1} & A_{2,2} & \cdots & A_{2,m} \\ \hline \vdots & \vdots & \cdots & \vdots \\ \hline A_{n,1} & A_{n,2} & \cdots & A_{n,m} \end{pmatrix}.$

On retiendra que :

- ▶ lors de la transposition, les blocs des lignes et colonnes sont échangés et transposés,
- ▶ pour la combinaison linéaire, le découpage par blocs des matrices en jeu doit être le même (blocs de même taille),
- lacktriangle pour le produit AB, le découpage selon les colonnes de A doit être le même que le découpage selon les lignes de B.

Lorsque n = m, on appelle :

- $\bullet \text{ matrice } triangulaire \ (sup\'erieure) \ par \ blocs \ toute \ matrice \ de \ la \ forme \left(\begin{array}{c|cccc} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ \hline (0) & A_{2,2} & \cdots & A_{2,n} \\ \hline \vdots & \ddots & \ddots & \vdots \\ \hline (0) & \cdots & (0) & A_{n,n} \end{array} \right)$
- ▶ matrice diagonale par blocs toute matrice de la forme $\begin{pmatrix} A_{1,1} & (0) & \cdots & (0) \\ \hline (0) & A_{2,2} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & (0) \\ \hline (0) & \cdots & (0) & A_{n,n} \end{pmatrix}.$
- C. Compléments sur les déterminants

Proposition 6 (Déterminant d'une matrice triangulaire par blocs)

Si
$$A = \begin{pmatrix} A_1 & \star & \cdots & \star \\ \hline 0 & A_2 & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \star \\ \hline 0 & \cdots & 0 & A_p \end{pmatrix}$$
 est une matrice triangulaire par blocs telle que pour tout

 $k \in [1, p], A_k$ est une matrice carrée, alors $\det(A) = \prod_{k=1}^p \det(A_k)$.

Attention, en général, $\det \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right) \neq \det(A) \det(D) - \det(C) \det(B)$.

Définition/Proposition 7 (Déterminant de Vandermonde)

Soit $n \in \mathbb{N}$, $n \ge 2$. Soit $(x_1, \dots, x_n) \in \mathbb{K}^n$.

• On appelle déterminant de Vandermonde du n-uplet (x_1, \ldots, x_n) le nombre :

$$V(x_1, \dots, x_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix}.$$

3

• On a $V(x_1, ..., x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$.

Notons que si (x_1, \ldots, x_n) est un *n*-uplet de nombres distincts deux à deux alors $V(x_1, \ldots, x_n) \neq 0$.

Exemple 7 : Problème d'interpolation de Lagrange

On considère n+1 points de \mathbb{R}^2 notés A_0, \ldots, A_n .

Pour tout $k \in [0, n]$, on note (a_k, b_k) les coordonnées du point A_k dans la base canonique et on suppose que les réels a_0, \ldots, a_n sont deux à deux distincts.

- 1. Montrer qu'il existe un unique polynôme de degré inférieur ou égal à n dont la courbe représentative passe par les points A_0, \ldots, A_n .
- 2. Soit $\varphi : \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$ définie par :

$$\forall P \in \mathbb{R}_n[X], \ \varphi(P) = (P(a_0), P(a_1), \dots, P(a_n))$$

En écrivant la matrice de l'application linéaire φ dans les bases canoniques, retrouver le résultat de la question précédente.

II. COMPLÉMENTS SUR LES POLYNÔMES

Ici, n désigne un entier naturel et a_0, \ldots, a_n sont n+1 éléments de \mathbb{K} deux à deux distincts.

Définition 8

On appelle polynômes interpolateurs de Lagrange associés à a_0,\ldots,a_n les polynômes L_0,\ldots,L_n définis par :

$$\forall i \in [0, n], L_i(X) = \prod_{\substack{k=0 \ k \neq i}}^n \frac{X - a_k}{a_i - a_k}.$$

Notons que pour tout $i \in [0, n]$, L_i est un polynôme de degré n et de cœfficient dominant $\prod_{\substack{k=0\\k\neq i}}^n (a_i - a_k)$

Proposition 9

- ► On a pour tout $(i,j) \in [0,n]^2$, $L_i(a_j) = \delta_{i,j} \stackrel{def.}{=} \begin{cases} 1 & \text{si } j=i \\ 0 & \text{si } j \neq i. \end{cases}$
- ▶ La famille $(L_0, ..., L_n)$ est une base de $\mathbb{K}_n[X]$ et on a pour tout $P \in \mathbb{K}_n[X]$:

$$P = \sum_{i=0}^{n} P(a_i) L_i.$$

• En particulier, on a $\sum_{i=0}^{n} L_i = 1$.

Exemple 7 (suite) : Problème d'interpolation de Lagrange

Donner une expression, à l'aide des polynômes interpolateurs de Lagrange, de l'unique polynôme de degré inférieur ou égal à n dont la courbe représentative passe par les points A_0, \ldots, A_n .

III. COMPLÉMENTS SUR LES ESPACES VECTORIELS

A. Produit d'espaces vectoriels

1. Produit de deux espaces vectoriels

On rappelle que le produit cartésien de deux ensembles A et B est l'ensemble de tous les couples dont la première composante appartient à A et la seconde à B.

$$A \times B = \{(u, v) \mid u \in A \text{ et } v \in B\}.$$

Lorsque A = B, on note cet ensemble A^2 .

Définition/Proposition 10

Soit (E, +, .) et (F, +, .) deux K-espaces vectoriels.

Si on pose:

- $\forall (u, v) \in E \times F, \ \forall (u', v') \in E \times F, \ (u, v) + (u', v') = (u + u', v + v')$
- $\qquad \forall (u,v) \in E \times F, \ \forall \lambda \in \mathbb{K}, \ \lambda \tilde{.} (u,v) = (\lambda.u,\lambda.\hat{v})$

alors $(E \times F, \check{+}, \check{\cdot})$ est un \mathbb{K} -espace vectoriel appelé espace vectoriel produit de E et F.

Proposition 11

Si E et F sont deux espaces vectoriels de dimension finie alors $E \times F$ est de dimension finie et on a :

$$\dim(E \times F) = \dim(E) + \dim(F).$$

2. GÉNÉRALISATION À UN NOMBRE FINI D'ESPACES VECTORIELS

Soit $p \in \mathbb{N}^*$. On rappelle que le produit cartésien de p ensembles A_1, \ldots, A_p est l'ensemble de tous les p-uplets où pour tout $i \in [1, p]$, la *i*ème composante appartient à A_i .

$$\prod_{i=1}^{p} A_i = \{(u_1, ..., u_p) \mid \forall i \in [1, p], u_i \in A_i\}.$$

Lorsque $A_1 = A_2 = \ldots = A_p$, on note cet ensemble A^p .

Pour simplifier, on utilise ci-dessous une unique notation pour l'addition et pour la multiplication externe, sans distinction selon les espaces vectoriels considérés.

Définition/Proposition 12

Soit E_1, \ldots, E_p p \mathbb{K} -espaces vectoriels.

Si on pose:

$$\forall (u_1,...,u_p) \in \prod_{i=1}^p E_i, \forall (u_1',...,u_p') \in \prod_{i=1}^p E_i : (u_1,...,u_p) + (u_1',...,u_p') = (u_1 + u_1',...,u_p + u_p')$$

$$\forall (u_1,...,u_p) \in \prod_{i=1}^p E_i, \ \forall \lambda \in \mathbb{K} : \lambda.(u_1,...,u_p) = (\lambda.u_1,...,\lambda.u_p)$$

alors $\left(\prod_{i=1}^{p} E_i, +, .\right)$ est un \mathbb{K} -espace vectoriel appelé espace vectoriel produit des E_1, \ldots, E_p .

Proposition 13

Si E_1, \ldots, E_p sont des espaces vectoriels de dimension finie alors $\prod_{i=1}^p E_i$ est de dimension finie et on a : $\dim\left(\prod_{i=1}^p E_i\right) = \sum_{i=1}^p \dim(E_i)$.

Exemple: \mathbb{C}^n est un \mathbb{C} -espace vectoriel de dimension n et un \mathbb{R} -espace vectoriel de dimension 2n.

B. Somme de sous-espaces vectoriels

On généralise dans ce paragraphe la notion de somme de deux sous-espaces vectoriels (étudiée en PCSI) à un nombre fini de sous-espaces vectoriels.

Dans ce paragraphe, E désigne un \mathbb{K} -espace vectoriel et F_1, \dots, F_p p sous-espaces vectoriels de E (où $p \in \mathbb{N}^*$).

a) Somme d'un nombre fini de sous-espaces vectoriels

Définition 14

On appelle somme des F_1, \ldots, F_p et on note $\sum_{i=1}^p F_i$ l'ensemble des vecteurs w de E pouvant

s'écrire $w = \sum_{i=1}^{p} u_i$ avec pour tout $i \in [1, p], u_i \in F_i$.

Ainsi:

$$\sum_{i=1}^{p} F_i = \{ w \in E \mid \exists (u_1, ..., u_p) \in \prod_{i=1}^{p} F_i \text{ tel que } w = \sum_{i=1}^{p} u_i \}.$$

Notons qu'on a $(F_1 + F_2) + F_3 = F_1 + F_2 + F_3 = F_1 + (F_2 + F_3)$.

La somme est associative : la somme d'un nombre fini de sous-espaces est inchangée par l'ajout ou le retrait de paires de parenthèses.

Proposition 15

La somme $\sum_{i=1}^{p} F_i$ est le plus petit sous-espace vectoriel de E contenant $\bigcup_{i=1}^{p} F_i$.

Si G est un sous-espace vectoriel de E alors on a l'équivalence :

$$\left[\sum_{i=1}^{p} F_i \subset G\right] \iff \left[\forall i \in [1, p], F_i \subset G\right]$$

Théorème 16

Hyp. On suppose que F_1, \ldots, F_p sont de dimension finie.

▶ Alors $\sum_{i=1}^{p} F_i$ est de dimension finie et on a :

$$\dim\left(\sum_{i=1}^p F_i\right) \leqslant \sum_{i=1}^p \dim(F_i).$$

• Cas particulier p = 2: Formule de Grassmann On a:

$$\dim(F_1 + F_2) = \dim(F_1) + \dim(F_2) - \dim(F_1 \cap F_2).$$

b) NOTION DE SOMME DIRECTE

Définition 17

La somme $\sum_{i=1}^{p} F_i$ est dite *directe* lorsque pour tout $w \in \sum_{i=1}^{p} F_i$, il existe un unique p-uplet $(u_1, \ldots, u_p) \in \prod_{i=1}^{p} F_i$ tel que $w = \sum_{i=1}^{p} u_i$.

Dans ce cas, la somme $\sum_{i=1}^{p} F_i$ est aussi notée $\bigoplus_{i=1}^{p} F_i$.

La somme directe est également associative.

Proposition 18 (Caractérisation de la somme directe dans le cas particulier p=2)

La somme $F_1 + F_2$ est directe si et seulement si $F_1 \cap F_2 = \{0_E\}$.

Attention, pour $p \ge 3$, on ne dispose plus d'une caractérisation de la somme directe par une intersection réduite au vecteur nul et il ne suffit pas que les F_i soient deux à deux en somme directe pour que la somme de tous les F_i soit directe.

Exemple 8 : Dans $E = \mathbb{R}^2$, on considère F = Vect((1,0)), G = Vect((0,1)) et H = Vect((1,1)). Montrer que les sous-espaces vectoriels F, G et H sont deux à deux en somme directe mais que la somme F + G + H n'est pas directe.

Proposition 19 (Caractérisation de la somme directe dans le cas général)

La somme $\sum_{i=1}^{p} F_i$ est directe si et seulement si :

$$\forall (u_1,\ldots,u_p) \in \prod_{i=1}^p F_i, \quad \left(\sum_{i=1}^p u_i = 0_E \Rightarrow \forall i \in [1,p], u_i = 0_E\right).$$

Proposition 20

Hyp. On suppose que F_1, \ldots, F_p sont de dimension finie.

La somme
$$\sum_{i=1}^{p} F_i$$
 est directe si et seulement si dim $\left(\sum_{i=1}^{p} F_i\right) = \sum_{i=1}^{p} \dim(F_i)$.

c) Décomposition de E en somme directe de sous-espaces vectoriels

Définition 21

On dit que F_1, \ldots, F_p sont supplémentaires dans E lorsque $E = \bigoplus_{i=1}^p F_i$.

$$E = \bigoplus_{i=1}^{p} F_i$$
 signifie $E = \sum_{i=1}^{p} F_i$ et la somme $\sum_{i=1}^{p} F_i$ est directe

ou encore tout élément w de E peut s'écrire de manière unique sous la forme $w = \sum_{i=1}^{p} u_i$ avec pour tout $i \in [1, p], u_i \in F_i$.

ightharpoonup Attention de ne pas confondre les termes complémentaire et supplémentaire. Si F est un sous-ensemble de E alors le complémentaire de F dans E est par définition :

$$E \smallsetminus F = \{u \in E, \ u \notin F\}.$$

Il vérifie comme propriété $F \cup (E \setminus F) = E$.

On peut noter que si F est un sous-espace vectoriel de E alors $E \setminus F$ n'est pas un sous-espace vectoriel de E car il ne contient pas 0_E .

Exemple 9 : Soit $E = \mathbb{R}^2$. On considère la droite vectorielle D = Vect((1,1)). Représenter graphiquement D, le complémentaire de D et un supplémentaire de D. Déterminer tous les supplémentaires de D.

▶ Pour montrer que $E = \bigoplus_{i=1}^{p} F_i$, on pourra procéder par analyse-synthèse (cf. exemple 10) ou utiliser les Propositions 22 et 23 lorsque l'espace vectoriel E est de dimension finie.

Exemple 10 : Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions définies de \mathbb{R} dans \mathbb{R} . On note F le sous-ensemble de E formé des fonctions paires et G celui formé des fonctions impaires. Montrer que F et G sont deux sous-espaces vectoriels supplémentaires dans E.

Proposition 22

Hyp. On suppose que E est de dimension finie.

Si deux des trois assertions suivantes sont vérifiées :

(i)
$$E = \sum_{i=1}^{p} F_i$$
 (ii) la somme $\sum_{i=1}^{p} F_i$ est directe (iii) dim $(E) = \sum_{i=1}^{p} \dim(F_i)$

alors
$$E = \bigoplus_{i=1}^{p} F_i$$
.

Proposition 23

Hyp. On suppose que E est de dimension finie.

 $E = \bigoplus_{i=1}^{p} F_i$ si et seulement si la concaténation d'une base de chaque F_i donne une base de E.

Conséquence: On obtient une décomposition de E en somme directe de sous-espaces vectoriels en réalisant une partition d'une base de E et en considérant les sous-espaces vectoriels engendrés par les vecteurs correspondants à chaque partie.

Par exemple, si $\mathscr{B} = (e_1, \ldots, e_n)$ est une base de E, en notant $F_1 = \text{Vect}(e_1, \ldots, e_p)$ et $F_2 = \text{Vect}(e_{p+1}, \ldots, e_n)$ $(1 \le p \le n)$ alors on a $E = F_1 \oplus F_2$.

Définition 24

Hyp. On suppose que E est de dimension finie.

- On appelle base de E adaptée à la décomposition $E = \bigoplus_{i=1}^{p} F_i$ toute base de E telle que les premiers vecteurs forment une base de F_1 , les suivants une base de F_2 ,..., et les derniers une base de F_p .
- lacktriangleright On appelle base de E adaptée au sous-espace vectoriel F toute base de E telle que les premiers vecteurs forment une base de F.

Pour obtenir une base de E adaptée à un sous-espace vectoriel $F \neq \{0_E\}$, il suffit de considérer une base de E, qui est alors une famille libre de E, que l'on complète en une base de E par le théorème de la base incomplète.

Proposition 25

 $\mathit{Hyp}.$ On suppose que E est de dimension finie.

Tout sous-espace vectoriel de ${\cal E}$ admet un supplémentaire.

Exemple 11 : Soit E un \mathbb{R} -espace vectoriel de dimension 6.

Soit $f \in \mathcal{L}(E)$ tel que $f^2 = -\mathrm{Id}_E$.

Pour tout $a \in E$, on note F(a) = Vect(a, f(a)).

1. Soit a un vecteur non nul de E. Montrer que la famille (a, f(a)) est libre.

- 2. Soit $(a_1, a_2) \in E^2$ avec $a_1 \neq 0_E$ et $a_2 \notin F(a_1)$. Montrer que $F(a_1)$ et $F(a_2)$ sont en somme directe et justifier que $F(a_1) \oplus F(a_2) \nsubseteq E$.
- 3. Soit $a_3 \in E$ tel que $a_3 \notin F(a_1) \oplus F(a_2)$. Montrer que $E = F(a_1) \oplus F(a_2) \oplus F(a_3)$.
- 4. Donner une base adaptée à la décomposition $E = F(a_1) \oplus F(a_2) \oplus F(a_3)$ et déterminer la matrice de f dans cette base.
 - d) Projecteurs et symétries

Définition 26

Hyp.: On suppose que F et G sont supplémentaires dans E.

- ▶ On appelle projecteur sur F parallèlement à G l'application p de E dans E qui à un vecteur w de E s'écrivant w = u + v avec $u \in F$ et $v \in G$ associe le vecteur p(w) = u.
- ▶ On appelle symétrie par rapport à F parallèlement à G l'application s de E dans E qui à un vecteur w de E s'écrivant w = u + v avec $u \in F$ et $v \in G$ associe le vecteur s(w) = u v.
- ▶ Si $E = F \oplus G$ alors définir une application linéaire sur E est équivalent à la définir sur F et sur G.
 - Ici, p est l'endomorphisme défini par $p_{|F} = \operatorname{Id}_F$ et $p_{|G} = 0_{\mathscr{L}(G)}$ et s par $s_{|F} = \operatorname{Id}_F$ et $s_{|G} = -\operatorname{Id}_G$.
- ▶ Si p est la projection sur F parallèlement à G alors $\mathrm{Id}_E p$ est celle sur G parallèlement à F et $2p \mathrm{Id}_E$ est la symétrie par rapport à F parallèlement à G.

Théorème 27

- p est un projecteur si et seulement si p est un endomorphisme de E vérifiant $p \circ p = p$.
- ▶ s est une symétrie si et seulement si s est un endomorphisme de E vérifiant $s \circ s = \mathrm{Id}_E$.
- Si p est un projecteur alors p est le projecteur sur F = Im(p) parallèlement à G = Ker(p).
- ▶ Si s est une symétrie alors s est la symétrie par rapport à $F = \text{Ker}(s \text{Id}_E)$ parallèlement à $G = \text{Ker}(s + \text{Id}_E)$.

IV. Représentation matricielle

Dans ce paragraphe, E et F désignent deux \mathbb{K} -espaces vectoriels de dimension finie. On note p la dimension de E et q celle de F.

A. Correspondences vectoriel / matriciel

Une base \mathscr{B} de E et une base \mathscr{C} de F étant fixées, tout problème vectoriel (avec des vecteurs et des applications linéaires de E dans F) peut être ramené à un problème matriciel (avec des matrices-colonnes et des matrices de taille $q \times p$).

Pour cela, on fait correspondre:

- \blacktriangleright à chaque vecteur de E (respectivement F) le vecteur-colonne de ses coordonnées dans la base \mathscr{B} (respectivement \mathscr{C}),
- \blacktriangleright à chaque application linéaire de E dans F sa matrice dans les bases \mathscr{B} et \mathscr{C} .

Deux bases étant fixées, correspondances vectoriel / matriciel

Soit $\mathscr{B} = (e_1, e_2, \dots, e_p)$ une base de E et $\mathscr{C} = (f_1, f_2, \dots, f_q)$ une base de F. Il existe un isomorphisme entre E et $\mathscr{M}_{p,1}(\mathbb{K})$, entre F et $\mathscr{M}_{q,1}(\mathbb{K})$ et entre $\mathscr{L}(E,F)$ et $\mathscr{M}_{q,p}(\mathbb{K})$ permettant les correspondances suivantes.

$$\exists!(u_1, u_2, \dots, u_p) \in \mathbb{K}^p / u = \sum_{i=1}^p u_i e_i$$

▶ Application linéaire : $\varphi \in \mathcal{L}(E, F)$

$$\forall j \in \{1, \dots, p\}, \exists !(a_{1,j}, a_{2,j}, \dots, a_{q,j}) \in \mathbb{K}^q / \varphi(e_j) = \sum_{i=1}^q a_{i,j} f_i$$

Évaluation de φ en u :

$$\varphi(u) = \sum_{i=1}^{q} \left(\sum_{j=1}^{p} a_{i,j} u_j \right) f_i$$

 $\qquad Vecteur\text{-}colonne: \ X \in \mathscr{M}_{p,1}(\mathbb{K})$

$$X = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_p \end{pmatrix} : \text{coordonnées de } u \text{ dans la base } \mathcal{B}$$

$$\Rightarrow X = Mat_{\mathcal{B}}(u)$$

 $\forall j \in \{1, \dots, p\}, j$ -ème colonne de A: coordonnées de $\varphi(e_j)$ dans la base $\mathscr E$

$$A = \begin{pmatrix} \vdots & a_{1,j} & \vdots \\ \vdots & a_{2,j} & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ a_{q,j} & \vdots \end{pmatrix} \begin{cases} f_1 \\ \vdots \\ f_q \end{cases}$$

 $\rightarrow A = Mat_{\mathscr{B},\mathscr{C}}(\varphi)$

Produit matriciel de A par X:
$$\begin{cases}
\sum_{j=1}^{p} a_{1,j} u_{j} \\
\sum_{j=1}^{p} a_{2,j} u_{j}
\end{cases} : \text{coordonnées de } \varphi(u) \text{ dans la base } \mathscr{C}$$

$$\vdots$$

$$\begin{cases}
\sum_{j=1}^{p} a_{n,j} u_{j}
\end{cases} \to AX = Mat_{\mathscr{B},\mathscr{C}}(\varphi) Mat_{\mathscr{B}}(u) = Mat_{\mathscr{C}}(\varphi(u))$$

Notons que ces correspondances préservent les notions de sous-espace vectoriel, famille libre, famille génératrice, base, dimension, rang. On a notamment $rg(\varphi) = rg(Mat_{\mathscr{B},\mathscr{C}}(\varphi))$.

Cas particulier E=F: Correspondance endomorphisme / matrice carrée.

Cas particulier $E = \mathcal{M}_{p,1}(\mathbb{K}), F = \mathcal{M}_{q,1}(\mathbb{K}), \mathcal{B}$ base canonique de $\mathcal{M}_{p,1}(\mathbb{K}), \mathcal{C}$ base canonique de $\mathcal{M}_{q,1}(\mathbb{K})$:

Dans ce cas, tout vecteur-colonne est égal au vecteur de ses coordonnées. Les correspondances signalées ci-dessus sont des égalités.

Réciproquement, si l'on dispose d'une matrice $A \in \mathcal{M}_{q,p}(\mathbb{K})$ et que l'on préfère travailler avec une application linéaire, on peut considérer l'application linéaire de $\mathcal{M}_{p,1}(\mathbb{K})$ dans $\mathcal{M}_{q,1}(\mathbb{K})$ canoniquement associée à A c'est-à-dire l'application :

$$\varphi_A: \left\{ \begin{array}{ccc} \mathscr{M}_{p,1}(\mathbb{K}) & \longrightarrow & \mathscr{M}_{q,1}(\mathbb{K}) \\ X & \longmapsto & AX \end{array} \right.$$

C'est l'application linéaire de $\mathcal{M}_{p,1}(\mathbb{K})$ dans $\mathcal{M}_{q,1}(\mathbb{K})$ qui a pour matrice A dans les bases canoniques de $\mathscr{M}_{p,1}(\mathbb{K})$ et $\mathscr{M}_{q,1}(\mathbb{K})$.

Si A est une matrice carrée, φ_A est l'endomorphisme de $\mathcal{M}_{p,1}(\mathbb{K})$ canoniquement associé à A.

On peut aussi considérer l'application linéaire de \mathbb{K}^p dans \mathbb{K}^q canoniquement associée à A: c'est l'application linéaire de \mathbb{K}^p dans \mathbb{K}^q qui a pour matrice A dans les bases canoniques de \mathbb{K}^p et \mathbb{K}^q .

B. Changement de base

Définition 28

Soit $\mathscr{B} = (e_1, \ldots, e_n)$ et $\mathscr{B}' = (e'_1, \ldots, e'_n)$ deux bases de E (espace vectoriel de dimension n). On appelle matrice de passage de la base \mathscr{B} à la base \mathscr{B}' et on note $P_{\mathscr{B},\mathscr{B}'}$ la matrice :

$$P_{\mathcal{B},\mathcal{B}'} = Mat_{\mathcal{B}}(\mathcal{B}') = \begin{pmatrix} \vdots & p_{1,j} & \vdots \\ \vdots & p_{2,j} & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & p_{n,j} & \vdots \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

On rappelle que $P_{\mathcal{B},\mathcal{B}'}$ est inversible et $(P_{\mathcal{B},\mathcal{B}'})^{-1} = P_{\mathcal{B}',\mathcal{B}}$.

Exemple 12 : Soit a_0, \ldots, a_n n+1 éléments de \mathbb{K} deux à deux distincts.

On note \mathscr{B} la base des polynômes interpolateurs de Lagrange associés à a_0, \ldots, a_n et \mathscr{C} la base canonique de $\mathbb{K}_n[X]$, écrire la matrice de passage de \mathscr{B} à \mathscr{C} .

Théorème 29

Soit \mathscr{B} et \mathscr{B}' deux bases de E et \mathscr{C} et \mathscr{C}' deux bases de F. Soit $\varphi \in \mathcal{L}(E,F)$.

On a alors:

$$Mat_{\mathscr{B}',\mathscr{C}'}(\varphi) = P_{\mathscr{C}',\mathscr{C}} Mat_{\mathscr{B},\mathscr{C}}(\varphi) P_{\mathscr{B},\mathscr{B}'}.$$

Cas particulier des endomorphismes :

Soit \mathscr{B} et \mathscr{B}' deux bases de E. Soit $\varphi \in \mathscr{L}(E)$.

On a:

$$Mat_{\mathscr{B}'}(\varphi) = P_{\mathscr{B}',\mathscr{B}}Mat_{\mathscr{B}}(\varphi)P_{\mathscr{B},\mathscr{B}'} = (P_{\mathscr{B},\mathscr{B}'})^{-1}Mat_{\mathscr{B}}(\varphi)P_{\mathscr{B},\mathscr{B}'}.$$

Exemple 13: On considère les vecteurs de \mathbb{R}^3 suivants: $v_1 = (0,1,1), v_2 = (1,1,0)$ et $v_3 = (1,1,1)$.

- 1. Montrer que $\mathscr{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- 2. On considère l'endomorphisme f de \mathbb{R}^3 ayant pour matrice $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ dans la base \mathscr{B} .

Déterminer la matrice de f dans la base canonique \mathscr{C} de \mathbb{R}^3 de deux façons : en utilisant les correspondances vectoriel / matriciel puis en utilisant les matrices de passage.

C. Matrices semblables

Ici, n désigne un entier naturel non nul.

Définition 30

Soit A et B deux éléments de $\mathcal{M}_n(\mathbb{K})$.

On dit que A est semblable à B lorsqu'il existe $P \in GL_n(\mathbb{K})$ tel que $A = PBP^{-1}$.

Proposition 31

La relation de similitude vérifie les propriétés suivantes pour toutes matrices A, B et C:

- \blacktriangleright A est semblable à A,
- lacktriangledown A est semblable à B si et seulement si B est semblable à A,
- lacktriangledown si A est semblable à B est semblable à C alors A est semblable à C.

Comme l'ordre n'a pas d'importance, on dira aussi :

« les matrices A et B sont semblables ».

Théorème 32

Deux matrices de $\mathcal{M}_n(\mathbb{K})$ sont semblables si et seulement si elles représentent un même endomorphisme d'un \mathbb{K} -espace vectoriel de dimension n dans deux bases.

Exemple 14: Montrer que les matrices $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$ et $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ sont semblables.

Proposition 33

Deux matrices semblables ont le même rang, le même déterminant et la même trace.

Définition/Proposition 34

Soit φ un endomorphisme d'un K-espace vectoriel de dimension finie.

- ▶ Toutes les matrices représentant φ ont le même déterminant : cette valeur commune est appelée le déterminant de φ et est notée det (φ) .
- ▶ Toutes les matrices représentant φ ont la même trace : cette valeur commune est appelée la trace de φ et est notée $\operatorname{tr}(\varphi)$.

Exemple 15: Soit p un projecteur d'un espace vectoriel E de dimension finie. Montrer que tr(p) = rg(p).

Proposition 35

Soit A et B deux éléments de $\mathcal{M}_n(\mathbb{K})$. Soit $P \in GL_n(\mathbb{K})$. Si $A = PBP^{-1}$ alors pour tout $p \in \mathbb{N}$, $A^p = PB^pP^{-1}$.

D. Sous-espaces stables

Dans ce paragraphe, E désigne un \mathbb{K} -espace vectoriel.

1. Définition et exemples

Définition 36

Soit φ un endomorphisme de E. Soit F un sous-espace vectoriel de E.

- ▶ On dit que F est stable par φ lorsque $\varphi(F) \subset F$ c'est-à-dire $\forall u \in F, \varphi(u) \in F$.
- L'application $\varphi_F: \begin{vmatrix} F & \longrightarrow & F \\ u & \longmapsto & \varphi(u) \end{vmatrix}$ est alors un endomorphisme de F appelé endomorphisme induit par φ sur F.

Exemples: Les sous-espaces $\{0_E\}$ et E sont stables par n'importe quel endomorphisme φ .

Exemple 16: Soit $\varphi \in \mathcal{L}(E)$. Soit $a \in E$. On note D = Vect(a).

Montrer que D est stable par φ si et seulement s'il existe $\lambda \in \mathbb{K}$ tel que $\varphi(a) = \lambda a$.

Déterminer dans ce cas l'endomorphisme induit par φ sur D.

Proposition 37

Soit φ et ψ deux endomorphismes de E.

Si φ et ψ commutent alors $Ker(\psi)$ est stable par φ .

Exemple: En particulier, $Ker(\varphi)$ est stable par φ et pour tout $n \in \mathbb{N}$, $Ker(\varphi^n)$ est stable par φ .

2. Représentation matricielle

On suppose que E de dimension finie $n \in \mathbb{N}^*$.

Proposition 38

Soit $\varphi \in \mathcal{L}(E)$.

Soit F un sous-espace vectoriel de E de dimension $p \in \mathbb{N}^*$.

Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de E adaptée à F c'est-à-dire telle que (e_1, \ldots, e_p) est une base de F.

Les assertions suivantes sont équivalentes :

- (i) F est stable par φ ,
- (ii) la matrice de φ dans la base \mathscr{B} est triangulaire par blocs : $\left(\begin{array}{c|c} A & B \\ \hline (0) & C \end{array}\right)$ où $A \in \mathscr{M}_p(\mathbb{K})$.

14

Dans ce cas, A est la matrice de φ_F dans la base (e_1, \ldots, e_p) .

Théorème 39

Soit $\varphi \in \mathcal{L}(E)$.

Soit F_1, \ldots, F_p p sous-espaces vectoriels de E tels que $E = \bigoplus_{k=1}^p F_k$.

Soit \mathscr{B} une base de E adaptée à la décomposition $E = \bigoplus_{k=1}^{p} F_k$ (concaténation de $\mathscr{B}_1, \ldots, \mathscr{B}_p$ où pour tout $k \in [1, p]$, \mathscr{B}_k est une base de F_k).

Les assertions suivantes sont équivalentes :

- (i) F_1, \ldots, F_p sont tous stables par φ ,
- (ii) la matrice de φ dans la base ${\mathscr B}$ est diagonale par blocs :

$$\begin{pmatrix}
A_1 & (0) & \cdots & (0) \\
\hline
(0) & A_2 & \ddots & \vdots \\
\hline
\vdots & \ddots & \ddots & (0) \\
\hline
(0) & \cdots & (0) & A_n
\end{pmatrix}$$
 où pour tout $k \in [1, p]$, $A_k \in \mathcal{M}_{\dim F_k}(\mathbb{K})$.

Dans ce cas, pour tout $k \in [1, p]$, A_k est la matrice de φ_{F_k} dans la base \mathscr{B}_k .

Exemple 17 : Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Soit $f \in \mathcal{L}(E)$ tel que $rg(f^2) = rg(f)$.

Montrer que $E = \text{Ker}(f) \oplus \text{Im}(f)$ puis donner la forme de la matrice de f dans une base adaptée à cette décomposition.

V. Polynômes d'endomorphismes et de matrices carrées

Dans ce paragraphe, E désigne un \mathbb{K} -espace vectoriel.

A. Définition

Définition 40

Soit $P \in \mathbb{K}[X]$. On note $P = \sum_{k=0}^{d} \lambda_k X^k$ où $d \in \mathbb{N}$.

- Soit $\varphi \in \mathcal{L}(E)$.

 On note $P(\varphi)$ l'endomorphisme de E défini par $P(\varphi) = \sum_{k=0}^{d} \lambda_k \varphi^k$,

 où $\varphi^0 = \mathrm{Id}_E$ et pour tout $k \in \mathbb{N}^*$, $\varphi^k = \underbrace{\varphi \circ \cdots \circ \varphi}_{k \text{ termes}}$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$.

 On note P(A) la matrice de $\mathcal{M}_n(\mathbb{K})$ définie par $P(A) = \sum_{k=0}^d \lambda_k A^k$,

 où $A^0 = I_n$ et pour tout $k \in \mathbb{N}^*$, $A^k = \underbrace{A \times \cdots \times A}_{k \text{ tormes}}$.

Exemple: Soit $P = X^2 + 3X - 10$.

Soit $\varphi \in \mathcal{L}(E)$. On a $P(\varphi) = \varphi^2 + 3\varphi - 10 \mathrm{Id}_E$.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a $P(A) = A^2 + 3A - 10I_n$.

Attention, pour $P \in \mathbb{K}[X]$, $\varphi \in \mathcal{L}(E)$ et $u \in E$, l'expression $(P(\varphi))(u)$ a un sens (c'est un vecteur de E) mais l'expression $P(\varphi(u))$ n'a pas de sens!

B. Propriétés

Proposition 41

Soit P et Q deux éléments de $\mathbb{K}[X]$. Soit $\alpha \in \mathbb{K}$.

• Soit $\varphi \in \mathcal{L}(E)$.

On a:

$$(\alpha P + Q)(\varphi) = \alpha P(\varphi) + Q(\varphi)$$
 et $(P \times Q)(\varphi) = P(\varphi) \circ Q(\varphi)$.

• Soit $A \in \mathcal{M}_n(\mathbb{K})$.

On a:

$$(\alpha P + Q)(A) = \alpha P(A) + Q(A) \text{ et } (P \times Q)(A) = P(A) \times Q(A).$$

Il est important de bien identifier les objets mathématiques concernés.

Notamment dans les assertions :
$$(\underbrace{P \times Q}_{\text{produit}})(\varphi) = \underbrace{P(\varphi) \circ Q(\varphi)}_{\text{composition}} \text{ et } (\underbrace{P \times Q}_{\text{produit}})(A) = \underbrace{P(A) \times Q(A)}_{\text{produit de matrices}}.$$

Exemple (suite):

Comme
$$P = (X + 5)(X - 2)$$
, on a $P(\varphi) = (\varphi + 5\mathrm{Id}_E) \circ (\varphi - 2\mathrm{Id}_E)$ et $P(A) = (A + 5I_n)(A - 2I_n)$.

Corollaire 42

▶ Soit $\varphi \in \mathcal{L}(E)$. Deux polynômes de l'endomorphisme φ commutent :

$$\forall (P,Q) \in (\mathbb{K}[X])^2, \ P(\varphi) \circ Q(\varphi) = Q(\varphi) \circ P(\varphi).$$

▶ Soit $A \in \mathcal{M}_n(\mathbb{K})$. Deux polynômes de la matrice A commutent :

$$\forall (P,Q) \in (\mathbb{K}[X])^2, \ P(A)Q(A) = Q(A)P(A).$$

Conséquence : Soit $\varphi \in \mathcal{L}(E)$. Soit $P \in \mathbb{K}[X]$.

Comme $P(\varphi)$ et φ commutent, $Ker(P(\varphi))$ est stable par φ .

Proposition 43

Soit $\varphi \in \mathcal{L}(E)$ et \mathcal{B} une base de E (supposé de dimension finie). Si $A = \operatorname{Mat}_{\mathcal{B}}(\varphi)$ alors pour tout $P \in \mathbb{K}[X]$, $P(A) = \operatorname{Mat}_{\mathcal{B}}(P(\varphi))$.

C. Polynômes annulateurs

Définition 44

Soit $P \in \mathbb{K}[X]$.

- ▶ Soit $\varphi \in \mathcal{L}(E)$. On dit que P est un polynôme annulateur de φ lorsque $P(\varphi) = 0_{\mathcal{L}(E)}$.
- ▶ Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que P est un polynôme annulateur de A lorsque $P(A) = 0_n$.

Exemple 18:

- 1. Déterminer un polynôme annulateur non nul d'une homothétie, d'un projecteur et d'une symétrie.
- 2. Soit D une matrice diagonale de cœfficients diagonaux $\lambda_1, \ldots, \lambda_n$. Déterminer un polynôme annulateur non nul de D.

Exemple 19 : Soit
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$$
.

- 1. Trouver un polynôme annulateur P non nul de A de degré inférieur ou égal à 2.
- 2. Application à l'inversibilité Montrer que A est inversible et exprimer son inverse A^{-1} comme un polynôme en A.

 $M\acute{e}thode$: Si l'on dispose d'un polynôme P annulateur de A ayant un terme constant λ_0 non nul, partant de l'égalité $P(A) = 0_n$, on isole le terme $\lambda_0 I_n$ et on met A en facteur de façon à obtenir une expression du type $AB = I_n$. Alors A est inversible et $B = A^{-1}$.

- 3. Application au calcul des puissances Soit $n \in \mathbb{N}$.
 - (a) À l'aide du théorème de division euclidienne, montrer qu'il existe $Q_n \in \mathbb{R}[X]$ et $(a_n, b_n) \in \mathbb{R}^2$ tels que $X^n = PQ_n + a_nX + b_n$ puis déterminer a_n et b_n .
 - (b) En déduire l'expression de A^n en fonction de n.

 $M\acute{e}thode$: Si l'on dispose d'un polynôme P non nul annulateur de A, pour calculer A^n :

- on effectue la division euclidienne de X^n par P, en notant R le reste, on a alors $A^n = R(A)$,
- on utilise les racines de P pour obtenir les coefficients de R et en déduire explicitement R(A).

Remarquons que si P est scindé à racines simples $\alpha_1, \ldots, \alpha_p$ alors R est l'unique polynôme de degré inférieur ou égal à p-1 tel que pour tout $k \in [1, p], R(\alpha_k) = \alpha_k^n$ (problème d'interpolation de Lagrange).

Ces méthodes s'appliquent également pour déterminer φ^{-1} et φ^n pour tout $n \in \mathbb{N}$ pour un endomorphisme φ .

Proposition 45

Soit $\varphi \in \mathcal{L}(E)$ avec E de dimension finie.

P est un polynôme annulateur de φ si et seulement si P est un polynôme annulateur de sa matrice dans une base quelconque.