RAPPELS ET COMPLÉMENTS D'ALGÈBRE LINÉAIRE

Exercices

1 Noyau, image et rang d'une matrice

Déterminer une base du noyau, une base de l'image et le rang de la matrice $A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & 5 \\ 1 & 2 & 3 \end{pmatrix}$.

2 Matrices stochastiques

Soit n un entier naturel non nul.

Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$. On dit que la matrice A est stochastique lorsque :

$$\forall (i,j) \in [1,n]^2, \ a_{i,j} \ge 0 \text{ et } \forall i \in [1,n], \ \sum_{j=1}^n a_{i,j} = 1$$

1. Soit $U \in \mathcal{M}_{n,1}(\mathbb{R})$ le vecteur-colonne dont tous les cœfficients sont égaux à 1. Montrer l'équivalence :

$$AU = U \iff \forall i \in [1, n], \sum_{j=1}^{n} a_{i,j} = 1$$

- 2. Soit A et B deux matrices stochastiques de $\mathcal{M}_n(\mathbb{R})$. Montrer que leur produit AB est une matrice stochastique.
- 3 Matrices à diagonales strictement dominantes Soit $A \in \mathcal{M}_n(\mathbb{K})$.
 - 1. Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \text{Ker}(A)$. On note $||X||_{\infty} = \max_{1 \leq i \leq n} |x_i|$.

 Montrer que pour tout $i \in [\![1,n]\!], |a_{i,i}|.|x_i| \leq ||X||_{\infty} \sum_{\substack{1 \leq j \leq n \\ j \neq i}} |a_{i,j}|$.
 - 2. On suppose que A est à diagonale strictement dominante c'est-à-dire qu'elle vérifie :

$$\forall i \in \llbracket 1, n \rrbracket, \ |a_{i,i}| > \sum_{\substack{1 \leqslant j \leqslant n \\ j \neq i}} |a_{i,j}|.$$

Montrer que la matrice A est inversible.

4 Autour de la trace

Soit $n \in \mathbb{N}^*$. Les deux questions sont indépendantes.

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que si $\operatorname{tr}(A^{\mathsf{T}}A) = 0$ alors A = 0.
- 2. Soit A et B deux éléments de $\mathcal{M}_n(\mathbb{K})$. Montrer que si AB - BA = A alors A n'est pas inversible.

5 Matrices de rang 1 Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que rg(A) = 1.

- 1. On note C_1, \ldots, C_n les colonnes de A. Montrer qu'il existe $i \in [\![1,n]\!]$ tel que tout $j \in [\![1,n]\!]$, il existe $\ell_j \in \mathbb{K}$ tel que $C_j = \ell_j C_i$. En déduire qu'il existe $C \in \mathscr{M}_{n,1}(\mathbb{K})$ et $L \in \mathscr{M}_{1,n}(\mathbb{K})$, C et L non nulles, telles que A = CL.
- 2. Montrer que LC = tr(A) et en déduire que $A^2 = tr(A)A$.

6 Formes linéaires sur $\mathcal{M}_n(\mathbb{C})$ à travers lesquelles le produit matriciel commute Soit $n \in \mathbb{N}$, $n \ge 2$.

- 1. Pour tout $(i,j) \in [1,n]^2$, on note $E_{i,j}$ la matrice de taille $n \times n$ dont tous les cœfficients sont nuls sauf celui placé sur la ligne i et la colonne j qui vaut 1. Soit $(i,j,k,l) \in [1,n]^4$. Calculer $E_{i,j}E_{k,l}$.
- 2. Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{C})$ vérifiant :

$$\forall (A,B) \in (\mathcal{M}_n(\mathbb{C}))^2, \ f(AB) = f(BA).$$

- (a) Montrer que pour tout $(i,j) \in [1,n]^2$ avec $i \neq j$, on a $f(E_{i,j}) = 0$ et $f(E_{i,i}) = f(E_{j,j})$.
- (b) En déduire qu'il existe $a \in \mathbb{C}$ tel que $f = a \operatorname{tr}$ où tr désigne l'application trace.

7 Calculs de déterminants

Calculer les déterminants suivants en essayant de limiter les calculs. Les paramètres sont des réels. Les deux derniers déterminants sont de taille $n \in \mathbb{N}^*$. Pour calculer le déterminant tridiagonal Δ_n , on pourra montrer que la suite $(\Delta_n)_{n \in \mathbb{N}^*}$ est une suite récurrente linéaire d'ordre 2.

$$A = \begin{vmatrix} 1 & j & j^2 \\ j^2 & 1 & j \\ j & j^2 & 1 \end{vmatrix} \text{ où } j = e^{2i\pi/3} \qquad B = \begin{vmatrix} 1+a & a & a \\ b & 1+b & b \\ c & c & 1+c \end{vmatrix}$$

$$D_{n} = \begin{vmatrix} 0 & \cdots & \cdots & 0 & a_{n} \\ \vdots & & \ddots & a_{n-1} & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & a_{2} & \ddots & & \vdots \\ a_{1} & 0 & \cdots & \cdots & 0 \end{vmatrix} \qquad \Delta_{n} = \begin{vmatrix} 3 & 1 & 0 & \cdots & 0 \\ 2 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 2 & 3 \end{vmatrix}_{[n]}$$

8 Exemple de déterminant d'une matrice à cæfficients polynômiaux Soit n un entier naturel non nul.

- 1. Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$. Pour tout $x \in \mathbb{R}$, on note A(x) la matrice carrée d'ordre n dont le terme général est $a_{i,j} + x$. Montrer que la fonction $x \mapsto \det(A(x))$ est une fonction polynômiale de degré inférieur ou égal à 1.
- 2. Application : Soit a et b deux réels distincts. Soit $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$. Déterminer la valeur du déterminant :

$$\begin{vmatrix} \lambda_1 & a & \cdots & a \\ b & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ b & \cdots & b & \lambda_n \end{vmatrix}$$

2

9 Matrices-blocs

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
 et $B = \begin{pmatrix} 0_n & A \\ I_n & 0_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$.

- 1. Déterminer det(B) en fonction de det(A).
- 2. Montrer que B est inversible si et seulement si A l'est et déterminer B^{-1} en fonction de A^{-1} .
- 3. Calculer B^p pour tout $p \in \mathbb{N}$.

10 Matrices-blocs

Soit
$$M \in \mathcal{M}_n(\mathbb{C})$$
 et $N = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$ avec $ac \neq 0$.

On note
$$P = \begin{pmatrix} aM & bM \\ \hline cM & dM \end{pmatrix} \in \mathscr{M}_{2n}(\mathbb{C}).$$

En écrivant P comme le produit de deux matrices, calculer le déterminant de P.

11 Révisions sur les sous-espaces vectoriels

Montrer que les ensembles suivants sont des espaces vectoriels, en déterminer une base et préciser leur dimension.

$$A = \operatorname{Vect}\left(\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 0 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} -4 \\ 2 \\ 0 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}\right), B = \left\{(x, y, z, t) \in \mathbb{R}^4, \ x + y + z + t = 0\right\}, \quad C = \left\{P \in \mathbb{R}_n[X], \ P(1) = 0\right\}$$

$$(n \in \mathbb{N}^*)$$

12 Supplémentarité de $\mathscr{S}_n(\mathbb{K})$ et $\mathscr{A}_n(\mathbb{K})$ dans $\mathscr{M}_n(\mathbb{K})$

Soit $n \in \mathbb{N}^*$. On note:

$$\mathscr{S}_n(\mathbb{K}) = \{ M \in \mathscr{M}_n(\mathbb{K}), M^{\mathsf{T}} = M \} \text{ et } \mathscr{A}_n(\mathbb{K}) = \{ M \in \mathscr{M}_n(\mathbb{K}), M^{\mathsf{T}} = -M \}$$

- 1. Montrer que $\mathscr{S}_n(\mathbb{K})$ et $\mathscr{A}_n(\mathbb{K})$ sont des sous-espaces vectoriels supplémentaires dans $\mathscr{M}_n(\mathbb{K})$ et déterminer leurs dimensions.
- 2. On note p la projection sur $\mathscr{S}_n(\mathbb{K})$ parallèlement à $\mathscr{A}_n(\mathbb{K})$ et s la symétrie par rapport à $\mathscr{S}_n(\mathbb{K})$ parallèlement à $\mathscr{A}_n(\mathbb{K})$.

Déterminer p(M) et s(M) pour tout $M \in \mathcal{M}_n(\mathbb{K})$.

Condition nécessaire et suffisante pour avoir Ker(f) et Im(f) supplémentaires Soit f un endomorphisme de E, espace vectoriel de dimension finie.

Montrer que :

$$\operatorname{rg}(f) = \operatorname{rg}(f^2) \iff E = \operatorname{Ker} f \oplus \operatorname{Im} f$$

14 Détermination d'un supplémentaire

Soit A un polynôme non nul et $F = \{P \in \mathbb{R}[X], A \text{ divise } P\}.$

Montrer que F est un sous-espace vectoriel de $\mathbb{R}[X]$ et en déterminer un supplémentaire. Indication : On pourra penser à utiliser la division euclidienne.

15 Im(f) isomorphe à tout supplémentaire du noyau

Soit $f \in \mathcal{L}(E)$. Montrer que Im(f) est isomorphe à tout supplémentaire du noyau.

16 Supplémentaire commun

Soit F et G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie n.

- 1. Démontrer que $F \cup G$ est un espace vectoriel si et seulement si $F \subset G$ ou $G \subset F$.
- 2. En déduire que $F \cup G = E$ si et seulement si F = E ou G = E.
- 3. Démontrer alors que dim $F = \dim G$ si et seulement si F et G ont un supplémentaire commun (on pourra raisonner par récurrence sur codim $F = n \dim F$).

17 Décomposition de E comme somme directe de trois sous-espaces vectoriels

Soit E un C-espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^3 = \mathrm{Id}_E$.

Pour tout $k \in \{0, 1, 2\}$, on pose $F_k = \text{Ker}(f - j^k \text{Id}_E)$ où $j = e^{2i\pi/3}$.

Montrer que
$$E = \bigoplus_{k=0}^{2} F_k$$
.

En supposant de plus que E est de dimension finie, donner la matrice de f dans une base adaptée à cette décomposition.

18 L'opérateur de différence

Soit f l'endomorphisme de $\mathbb{R}[X]$ défini par : $\forall P \in \mathbb{R}[X]$, f(P) = P(X+1) - P(X).

Pour tout $n \in \mathbb{N}$, on pose :

$$f_n: \begin{array}{ccc} \mathbb{R}_n[X] & \longrightarrow & \mathbb{R}_n[X] \\ P & \longmapsto & f(P) \end{array}$$

- 1. Écrire la matrice de f_3 relativement à la base canonique de $\mathbb{R}_3[X]$.
- 2. (a) Soit $P \in \text{Ker}(f)$. Montrer que P P(0) admet une infinité de racines.
 - (b) En déduire Ker(f).
- 3. (a) Soit $n \in \mathbb{N}$. Déterminer le noyau et l'image de f_n .
 - (b) En déduire que f est surjectif.
- 4. (a) Trouver tous les polynômes P tels que $P(X+1) P(X) = X^2$.
 - (b) En déduire une expression simple de $\sum_{k=0}^{n} k^2$ pour tout $n \in \mathbb{N}$.
- 5. On pose $H_0 = 1$ et pour tout $k \in \mathbb{N}^*$, $H_k = \frac{1}{k!}X(X-1)(X-2)...(X-k+1)$. Montrer que pour tout $k \in \mathbb{N}^*$, $f(H_k) = H_{k-1}$.
- 6. Soit $n \in \mathbb{N}$.
 - (a) Montrer que $(H_0, ..., H_n)$ est une base de $\mathbb{R}_n[X]$.
 - (b) Déterminer la matrice de f_n dans la base (H_0, \ldots, H_n) .
 - (c) Montrer que pour tout $P \in \mathbb{R}_n[X]$, on a :

$$P = \sum_{k=0}^{n} [f^{k}(P)](0)H_{k}.$$

19 Problème des moments

Soit X une variable aléatoire finie définie sur un espace probabilisé (Ω, P) telle que :

$$X(\Omega) = \{x_0, x_1, \dots, x_n\}$$
 (les x_i étant des réels deux à deux distincts).

Soit $(m_1, ..., m_n) \in \mathbb{R}^n$. On suppose que pour tout $k \in [1, n]$, $E(X^k) = m_k$. Comment peut-on déterminer la loi de X?

Application: En utilisant cette méthode, déterminer la loi de la variable aléatoire Y qui vérifie :

$$Y(\Omega) = \{0, 1, 2\}, E(Y) = 1 \text{ et } E(Y^2) = \frac{5}{3}$$

Preuve du déterminant de Vandermonde par les matrices de passage Soit $n \in \mathbb{N}$, $n \ge 2$. Soit $(x_1, \ldots, x_n) \in \mathbb{K}^n$, deux à deux distincts.

On note
$$V(x_1, \dots, x_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix}$$
 le déterminant de Vandermonde de x_1, \dots, x_n .

On souhaite prouver par une autre démonstration que celle vue en cours que $V(x_1, \ldots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$.

On considère les trois bases de $\mathbb{R}_{n-1}[X]$ suivantes :

- $\mathscr{B} = (1, \dots, X^{n-1})$ la base canonique,
- $\mathcal{B}' = (L_1, \ldots, L_n)$ la base des polynômes d'interpolation de Lagrange associés à x_1, \ldots, x_n ,
- $\mathscr{B}'' = (1, X x_1, (X x_1)(X x_2), \dots, (X x_1)(X x_2) \dots (X x_{n-1})).$

Exprimer la matrice de passage de \mathscr{B}' à \mathscr{B} en fonction de celle de \mathscr{B}' à \mathscr{B}'' . Conclure.

21 Matrices semblables

Soit
$$A = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$$
 et $B = \begin{pmatrix} f & 0 & 0 \\ e & d & 0 \\ c & b & a \end{pmatrix}$ deux éléments de $\mathcal{M}_3(\mathbb{C})$.

Montrer que les matrices A et B sont semblables.

Expliciter $P \in GL_3(\mathbb{C})$ telle que $B = P^{-1}AP$.

22 Matrices semblables

Montrer que pour tout $a \in \mathbb{R}$, les matrices A_a et B_a sont semblables :

$$A_a = \begin{pmatrix} 4-a & 1 & -1 \\ -6 & -1-a & 2 \\ 2 & 1 & 1-a \end{pmatrix} \text{ et } B_a = \begin{pmatrix} 1-a & 1 & 0 \\ 0 & 1-a & 0 \\ 0 & 0 & 2-a \end{pmatrix}$$

23 Matrices semblables

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K}) \setminus \{0\}$.

Montrer que $A^2 = 0$ si et seulement s'il existe $r \in \mathbb{N}^*$ tel que A soit semblable à $\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$ avec $2r \leqslant n$.

On pourra commencer par étudier le cas n=3.

24 Deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables dans $\mathcal{M}_n(\mathbb{C})$ sont semblables dans $\mathcal{M}_n(\mathbb{R})$

On se propose de démontrer le résultat suivant :

« deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables dans $\mathcal{M}_n(\mathbb{C})$ sont semblables dans $\mathcal{M}_n(\mathbb{R})$ ».

Soit donc A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables dans $\mathcal{M}_n(\mathbb{C})$ et un élément P de $GL_n(\mathbb{C})$ tel que $A = PBP^{-1}$.

- 1. Montrer qu'il existe R et J éléments de $\mathcal{M}_n(\mathbb{R})$ tels que $P=R+\mathrm{i} J$ avec $\mathrm{i}^2=-1$.
- 2. Montrer que pour tout $t \in \mathbb{C}$, A(R+tJ) = (R+tJ)B.
- 3. Montrer qu'il existe $t_0 \in \mathbb{R}$ tel que $\det(R + t_0 J) \neq 0$.
- 4. En déduire que A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

25 Trace d'un endomorphisme

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et f l'endomorphisme de $\mathcal{M}_n(\mathbb{K})$ défini par : $\forall M \in \mathcal{M}_n(\mathbb{K}), f(M) = AM$. Calculer $\operatorname{tr}(f)$ en fonction de $\operatorname{tr}(A)$.

26 Endomorphismes nilpotents

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$.

Un endomorphisme u de E est dit nilpotent lorsqu'il existe $p \in \mathbb{N}$ tel que $u^p = 0_{\mathscr{L}(E)}$.

Le plus petit entier p tel que $u^p = 0_{\mathscr{L}(E)}$ est appelé indice de nilpotence de u.

On considère ici un endomorphisme u de E nilpotent et non nul, d'indice de nilpotence p.

- 1. Justifier qu'il existe $x_0 \in E$ tel que $x_0 \notin \text{Ker}(u^{p-1})$. Montrer que la famille $(x_0, u(x_0), \dots, u^{p-1}(x_0))$ est libre.
- 2. En déduire qu'on a $p \le n$, $u^n = 0_{\mathscr{L}(E)}$ et $\operatorname{rg}(u) \ge p-1$.

On suppose désormais que p = n.

- 3. Montrer que $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est une base de E.
- 4. (a) Soit $v \in \mathcal{L}(E)$ tel que $v \circ u = u \circ v$.

Justifier qu'il existe
$$(\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{K}^n$$
 tel que $v(x_0) = \sum_{k=0}^{n-1} \alpha_k u^k(x_0)$.

En posant
$$P = \sum_{k=0}^{n-1} \alpha_k X^k$$
, montrer qu'on a $v = P(u)$.

- (b) En déduire que les seuls endomorphismes de E qui commutent avec u sont les polynômes en u.
- 5. Déterminer $\operatorname{tr}(u^k)$ pour tout $k \in \mathbb{N}^*$.

27 Somme directe de sous-espaces vectoriels, égale à E

Soit E un espace vectoriel de dimension finie et p_1, \ldots, p_m des projecteurs de E tels que $\sum_{i=1}^m p_i = \mathrm{Id}_E$.

Montrer que $E = \bigoplus_{i=1}^{m} \text{Im}(p_i)$. Indication : On pour utiliser la trace.

28 Matrices de trace nulle

- 1. Soit E un espace vectoriel et $f \in \mathcal{L}(E)$ tel que pour tout $x \in E$, la famille (x, f(x)) est liée.
 - (a) Montrer que pour tout $x \in E$ non nul, il existe un scalaire λ_x tel que $f(x) = \lambda_x x$.
 - (b) Comparer λ_x et λ_y pour x et y deux vecteurs non nuls. On pourra considérer les cas : la famille (x,y) est liée et la famille (x,y) est libre.
 - (c) En déduire que f est une homothétie.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ de trace nulle.

Montrer que A est semblable à une matrice n'ayant que des 0 sur la diagonale.

On pourra raisonner par récurrence sur n.

29 Sous-espaces stables de $\mathbb{R}[X]$ par l'opérateur de dérivation

On considère l'endomorphisme D de dérivation sur $\mathbb{K}[X]$ défini par D(P) = P' pour tout $P \in \mathbb{K}[X]$.

- 1. Vérifier que pour tout n de \mathbb{N} , $\mathbb{K}_n[X]$ est stable par D et donner la matrice A_n de l'endomorphisme induit par D sur $\mathbb{K}_n[X]$ dans la base canonique de $\mathbb{K}_n[X]$.
- 2. Soit F un sous-espace vectoriel de $\mathbb{K}[X]$, de dimension finie non nulle, stable par D.

6

- (a) Justifier l'existence d'un entier naturel n et d'un polynôme R de degré n tel que $R \in F$ et $F \subset \mathbb{K}_n[X]$
- (b) Montrer que la famille $(D^i(R))_{0 \le i \le n}$ est une famille libre de F.
- (c) En déduire que $F = \mathbb{K}_n[X]$.
- 3. Donner tous les sous-espaces de $\mathbb{K}[X]$ stables par D.

30 Drapeau d'un espace vectoriel

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

On appelle drapeau de E toute suite finie (E_0, E_1, \ldots, E_p) de sous-espaces vectoriels de E, strictement croissante, commençant par l'espace nul et terminant par E, c'est-à-dire telle que :

$$\{0_E\} = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_{p-1} \subsetneq E_p = E$$

Soit φ un endomorphisme de E.

Montrer qu'il existe un drapeau de E composé de sous-espaces vectoriels tous stables par φ si et seulement s'il existe une base de E dans laquelle la matrice de φ est triangulaire par blocs.

31 Nilespace et cœur

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie.

On pose:

$$N = \bigcup_{p=0}^{\infty} \operatorname{Ker}(u^p)$$
 et $C = \bigcap_{p=0}^{\infty} \operatorname{Im}(u^p)$

- 1. Montrer qu'il existe $n \in \mathbb{N}$ tel que $N = \text{Ker}(u^n)$ et $C = \text{Im}(u^n)$.
- 2. Établir que N et C sont des sous-espaces vectoriels supplémentaires dans E, stables par u et tels que les endomorphismes induits $u_{|N}$ et $u_{|C}$ soient respectivement nilpotent et bijectif.
- 3. Réciproquement, on suppose $E = F \oplus G$ avec F et G sous-espaces vectoriels stables par u tels que les endomorphismes induits u_F et u_G soient respectivement nilpotent et bijectif. Établir F = N et G = C.

32 Existence d'un polynôme annulateur non nul en dimension finie

Soit E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

Justifier l'existence d'un entier naturel p tel que la famille $(\mathrm{Id}_E, u, \ldots, u^p)$ soit liée.

En déduire que u possède un polynôme annulateur non nul.

33 Recherche de polynômes annulateurs

- 1. Soit $n \in \mathbb{N}^*$. Soit J la matrice de $\mathscr{M}_n(\mathbb{R})$ dont tous les cœfficients sont égaux à 1. Déterminer un polynôme annulateur non nul de J.
- 2. Déterminer un polynôme annulateur non nul de l'endomorphisme :

$$u: \begin{pmatrix} \mathcal{M}_{2,1}(\mathbb{R}) & \to & \mathcal{M}_{2,1}(\mathbb{R}) \\ x & & & & \\ y & & \mapsto & \begin{pmatrix} x+y \\ x+y \end{pmatrix}. \end{pmatrix}$$

3. Soit v l'endomorphisme de \mathbb{R}^3 défini sur la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 par :

$$v(e_1) = e_2$$
 $v(e_2) = 0$ $v(e_3) = e_3$.

Déterminer un polynôme annulateur non nul de v.

34 Polynôme annulateur d'une matrice triangulaire par blocs Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire par blocs de la forme :

$$M = \begin{pmatrix} A & C \\ (0) & B \end{pmatrix}$$
 avec $A \in \mathcal{M}_p(\mathbb{K})$ et $B \in \mathcal{M}_q(\mathbb{K})$.

On suppose que P est un polynôme annulateur de A et Q est un polynôme annulateur de B. Déterminer un polynôme annulateur de M.

35 Calcul de u^{-1} et u^n pour tout $n \in \mathbb{N}$

Soit $u \in \mathcal{L}(E)$. On suppose que $P = (X - 1)^2$ est un polynôme annulateur de u.

- 1. Montrer que u est un automorphisme de E et donner une expression de u^{-1} comme combinaison linéaire de Id_E et u.
- 2. Soit $n \in \mathbb{N}$. Donner une expression de u^n comme combinaison linéaire de Id_E et u.