Pack de demarrage - formalisme - fonctions DS1 - durée : 2h

PCS12 - Mathématiques 19 septembre 2025

Exercice 1 :

En précisant soigneusement les ensembles de définition et de résolution, résolution et se équations suivantes, d'inconnue x réelle :

1.
$$x^2 + 6x - 7 = 0$$
, puis $e^{2x} + 6e^x - 7 = 0$

2.
$$\sqrt{3x+7} = x+1$$

1. On remarque déjà que l'équation est une équation polynômiale, définie sur \mathbb{R} , et qu'on va résoudre sur \mathbb{R} également.

En observant que 1 est solution évidente, on en déduit que -7 est également solution d'où

$$x^2 + 6x - 7 = 0 \Leftrightarrow x = 1 \text{ ou } x = -7$$

Pour la seconde équation, posons $X = e^x$.

L'équation $e^{2x} + 6e^x - 7 = 0$ devient alors $X^2 + 6X - 7 = 0$ mais cette fois X > 0.

Ainsi X = 1 est l'unique solution, c'est à dire

$$e^{2x} + 6e^x - 7 = 0 \Leftrightarrow x = 0$$

2. On commence par régler le problème de définition : $\sqrt{3x+7}$ est défini si et seulement si $3x+7 \ge 0$, c'est à dire $x \ge -\frac{7}{3}$.

En outre, si x est solution, alors comme $\sqrt{3x+7} \ge 0$, on a également $x+1 \ge 0$, donc $x \ge -1$. L'ensemble de résolution de cette équation est donc $[-1, +\infty[$.

Sur cet intervalle, $\sqrt{3x+7}$ et x+1 sont positifs, ainsi :

$$\sqrt{3x+7} = x+1 \Leftrightarrow 3x+7 = (x+1)^2$$
$$\Leftrightarrow 0 = x^2 + 2x + 1 - 3x - 7$$
$$\Leftrightarrow 0 = x^2 - x - 6$$

Or $x^2 - x - 6 = 0 \Leftrightarrow x = -2$ ou x = 3 (-2 est racine évidente, ou on calcule le discriminant qui vaut 25)

Comme -2 n'est pas dans l'ensemble de résolution, on en déduit que

$$\sqrt{3x+7} = x+1 \Leftrightarrow x=3$$

Exercice 2:

Résoudre les systèmes ci dessous :

$$S_1: \begin{cases} 2x - 5y + 3z &= 5\\ 3x - 7y + 5z &= 8 \end{cases}$$

$$S_2: \begin{cases} 2x + 5y - 6z &= 3\\ x + 2y - 2z &= 1\\ -3x - 8y + 10z &= -5 \end{cases}$$

$$S_{1}: \left\{ \begin{array}{cccc} x-3y+2z & = 1 \\ 2x-5y+3z & = 5 \\ 3x-7y+5z & = 8 \end{array} \right. \iff \left\{ \begin{array}{cccc} x-3y+2z & = 1 \\ y-z & = 3 \\ 2y-z & = 5 \end{array} \right.$$

$$\downarrow \longrightarrow \\ L_{3} \leftarrow L_{3}-2L_{2} \qquad \left\{ \begin{array}{cccc} x-3y+2z & = 1 \\ y-z & = 3 \\ z & = -1 \end{array} \right.$$

$$\Leftrightarrow \left\{ \begin{array}{cccc} x-3y+2z & = 1 \\ y-z & = 3 \\ z & = -1 \end{array} \right.$$

$$\leftarrow \longrightarrow \left\{ \begin{array}{cccc} x & = 9 \\ y & = 2 \\ z & = -1 \end{array} \right.$$

L'unique solution de S_1 est donc x = 9, y = 2, z = -1.

$$S_{2}: \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ x + 2y - 2z & = 1 \\ -3x - 8y + 10z & = -5 \end{array} \right. \iff \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ y - 2z & = 1 \\ -y + 2z & = -1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ y - 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ -y + 2z & = -1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \\ 0 + 2z & = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6z & = 3 \end{array} \right. \\ \left\{ \begin{array}{c} 2x + 5y - 6$$

L'ensemble des solutions est donc

$$S = \{(-1 - 2z, 1 + 2z, z), z \in \mathbb{R}\}\$$

Exercice 3 : des ensembles de définition

Les deux questions sont indépendantes.

- 1. Déterminez l'ensemble de définition de la fonction $f: x \mapsto \ln\left(\frac{3+x}{3-x}\right)$. Déterminez sa parité éventuelle (paire, impaire ou ni l'un ni
- 2. Soit $P: x\mapsto x^3+x^2+2x+2$ a) Trouver un $\alpha\in\mathbb{R}$ tel que $P(\alpha)=0$.
 - b) En remplaçant α par la valeur de la question précédente, déterminez $a,b,c\in\mathbb{R}$ tels que, pour tout $x\in\mathbb{R}$

$$P(x) = (x - \alpha)(ax^2 + bx + c)$$

c) En déduire l'ensemble de définition de la fonction

$$f: x \mapsto \sqrt{\frac{x^3 + x^2 + 2x + 2}{x - 2}}$$

1. Comme ln est définie sur \mathbb{R}_+^* , f(x) existe si et seulement si $\frac{3+x}{3-x} > 0$ et $3-x \neq 0$. Le plus simple est de faire un tableau de signe :

x	$-\infty$		-3		3		$+\infty$
3+x		_	0	+		+	
3-x		+		+	0	_	
quotient		_	0	+		_	

Ainsi, f est définie sur] -3;3[

De plus, pour tout $x \in]-3;3[$,

$$f(-x) = \ln\left(\frac{3-x}{3+x}\right) = -\ln\left(\frac{3+x}{3-x}\right) = -f(-x)$$

donc | f est impaire.

- a) On a P(-1) = 0, d'où $\alpha = -1$
 - b) On cherche $a, b, c \in \mathbb{R}$ tels que

$$P(x) = (x+1)(ax^2 + bx + c)$$

Plusieurs techniques : on peut développer et identifier, ou repérer directement que a=1et c=2, avant d'en déduire que b=0ainsi

$$P(x) = (x+1)(x^2+2)$$

c) Comme $x^2 + 2 > 0$ pour tout $x \in \mathbb{R}$, P(x) est du signe de (x + 1).

D'autre part, le quotient est défini pour $x \neq 2$.

Enfin, comme $x \mapsto \sqrt{x}$ est défini sur \mathbb{R}_+ seulement, on va utiliser un tableau de signe :

x	$-\infty$		-1		2		$+\infty$
(x+1)		_	0	+		+	
(x^2+2)		+		+		+	
x-2		_		_	0	+	
quotient		+	0	_		+	

Finalement, f est définie sur $[]-\infty,-1]\cup]2,+\infty[]$

📤 Exercice 4 : Des récurrences

1. Soit la suite (u_n) définie par

$$\left\{\begin{array}{cc} u_0 & = 0 \\ \forall n \geq 0, u_{n+1} & = u_n + (2n+1) \end{array}\right.$$

- a) Vérifiez que $u_1=1$ et $u_2=4$, puis calculez u_3 et u_4 . b) Conjecturer une formule donnant u_n pour tout $n\in\mathbb{N}$ et démontrez cette formule par récurrence.

$$\begin{cases} u_0 = u_1 & = 1 \\ \forall n \ge 0, u_{n+2} & = u_{n+1} + 3u_n \end{cases}$$

Montrez que $\forall n \in \mathbb{N}, u_n \leq 3^n$

a) On a bien $u_1 = 0 + (2 \times 0 + 1) = 1$. 1.

Ensuite $u_2 = u_1 + (2 \times 1 + 1) = 4$, comme annoncé, puis $u_3 = u_2 + 2 \times 2 + 1 = 9$ et $u_4 = 16$.

b) Il semblerait que pour tout $n \in \mathbb{N}, u_n = n^2$.

Soit donc P_n la proposition : $u_n = n^2$ et montrons par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Pour n = 0, on a bien $u_0 = 0 = 0^2$, donc P_0 est vraie.

Hérédité: Soit $n \in \mathbb{N}$. Supposons que P_n est vraie, c'est à dire $u_n = n^2$. On a alors $u_{n+1} = u_n + 2n + 1 = n^2 + 2n + 1 = (n+1)^2$

Ainsi P_{n+1} est vraie et l'hérédité est vérifiée.

Conclusion: Par le principe de récurrence, pour tout $n \in \mathbb{N}$, $u_n = n^2$.

2. Soit P_n la proposition $u_n \leq 3^n$ et montrons par récurrence double que pour tout $n \in \mathbb{N}$, P_n est

On a bien $u_0 = 1 \le 3^0$, et $u_1 = 1 \le 3^1$: P_0 et P_1 sont vérifiée.

Hérédité: Soit $n \in \mathbb{N}$. Supposons que P_n et P_{n+1} sont vraies, c'est à dire que $u_n \leq 3^n$ et $u_{n+1} \le 3^{n+1}$

Alors $3u_n \leq 3^{n+1}$ (3 est positif) et par somme d'inégalités

$$u_{n+1} + 3u_n \le 3^{n+1} + 3^{n+1} = 2 \times 3^{n+1}$$

Ainsi $u_{n+2} \leq 2.3^{n+1}$ et comme 2 < 3, on en déduit

$$u_{n+2} \le 3.3^{n+1} = 3^{n+2}$$

ce qui achève l'hérédité.

Conclusion: par le principe de récurrence, pour tout $n \in \mathbb{N}$, $u_n \leq 3^n$.

Exercice 5 :

Soit $m \in \mathbb{R}$ et soit le système d'inconnues $x,y \in \mathbb{R}$ suivant :

$$\begin{cases} x + my &= 1\\ mx + y &= 1 \end{cases}$$

Déterminez le nombre de solutions de ce système en fonction des valeurs de m

Exercice difficile sur lequel on n'a pas encore fait beaucoup (à peine en corrigé de TD en autonomie). L'idée est de faire très attention à chaque opération, car il ne faut en faire aucune d'interdite.

La première opération qu'on veut faire est $L_2 \leftarrow L_2 - mL_1$. Celle-ci est possible, quel que soit m: c'est L_1 qui est multipliée par m, donc même si m=0, ce n'est pas un problème.

On obtient alors:

$$\begin{cases} x + my = 1 \\ mx + y = 1 \end{cases} \Leftrightarrow \begin{cases} x + my = 1 \\ (1 - m^2)y = 1 - m \end{cases}$$

Il y a alors trois cas:

si $m^2 - 1 \neq 0$: c'est à dire si $m \neq 1$ et $m \neq -1$.

Le système est de rang 2, avec deux inconnues. Il y a un unique couple solution (il suffit de diviser par $1-m^2$ la deuxième ligne, et réinjecter dans la première pour avoir x et y... ce n'est pas demandé : on veut juste le nombre de solution!)

si m=1 Le système devient

$$\begin{cases} x+y &= 1\\ 0 &= 0 \end{cases}$$

Rang 1, deux inconnues et compatible : il y a une inconnue paramètre, et donc une infinité de solutions.

 $\sin m = -1$

$$\begin{cases} x - y &= 1 \\ 0 &= 2 \end{cases}$$

Cette fois, c'est incompatible, et le système n'a pas de solution.

Exercice 6: A faire en dernier et seulement si tout le reste est fait.

On considère la suite (u_n) définie par $u_0=rac{1}{2}$ et, pour tout $n\in\mathbb{N},\ u_{n+1}=rac{u_n}{u_n-1}$

- 1. Calculez u_1,u_2,u_3,u_4 . 2. Conjecturer une formule pour u_{2n} et pour u_{2n+1} et démontrez la

1. On a
$$u_1 = \frac{u_0}{u_0 - 1} = \frac{\frac{1}{2}}{-\frac{1}{2}} = -1$$

Puis
$$u_2 = \frac{u_1}{u_1 - 1} = \frac{-1}{-2} = \frac{1}{2}$$

On a alors $u_3 = -1$ et $u_4 = \frac{1}{2}$.

2. Il semblerait que $u_{2n} = \frac{1}{2}$ et que $u_{2n+1} = -1$.

Pour tout $n \in \mathbb{N}$, posons donc $\mathcal{P}(n)$ la proposition : $u_{2n} = \frac{1}{2}$ et $u_{2n+1} = -1$.

C'est une récurrence simple, même si ça ressemble à une récurrence double (en fait, c'est une récurrence où la proposition P(n) contient deux propositions)

Initialisation: pour n = 0, on a $u_{2\times 0} = u_0 = \frac{1}{2}$ et $u_{2\times 0+1} = u_1 = -1$. La proposition $\mathcal{P}(0)$ est donc vérifiée.

Hérédité : Soit $n \in \mathbb{N}$. Supposons que $\mathcal{P}(n)$ est vraie.

Alors $u_{2(n+1)} = u_{2n+2} = \frac{u_{2n+1}}{u_{2n+1} - 1}$. Or $u_{2n+1} = -1$ car on a supposé $\mathcal{P}(n)$.

Donc $u_{2(n+1)} = \frac{-1}{-2} = \frac{1}{2}$.

De plus, $u_{2(n+1)+1} = u_{2n+3} = \frac{u_{2n+2}}{u_{2n+2}-1}$. On vient de montrer que $u_{2(n+1)} = u_{2n+2} = \frac{1}{2}$

On a donc $u_{2(n+1)+1} = \frac{\frac{1}{2}}{\frac{1}{2}-1} = \frac{\frac{1}{2}}{-\frac{1}{2}} = -1$

On a bien prouvé $\mathcal{P}(n+1)$

Conclusion : par le principe de récurrence, on a bien, pour tout $n \in \mathbb{N}$, que $u_{2n} = \frac{1}{2}$ et $u_{2n+1} = -1$.