Devoir Surveillé n° 1. le 22 septembre.

Problème: Anneau des entiers de Gauss

Un anneau A commutatif est dit principal lorsque tout idéal de A est engendré par un élément.

1. Donner deux exemples d'anneaux principaux.

Propriétés de l'anneau $\mathbb{Z}[i]$

On appelle entier de Gauss un nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs : u = a + ib, $(a, b) \in \mathbb{Z}^2$. On désigne par $\mathbb{Z}[i]$ l'ensemble des entiers de Gauss.

- 2. Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} . Est-il intègre? Est-ce un corps?
- **3.** a) Montrer que, pour tout $u \in \mathbb{Z}[i], |u|^2$ est un entier naturel.
 - b) Montrer que u est inversible dans $\mathbb{Z}[i]$ si et seulement si |u|=1.
 - c) En déduire l'ensemble des éléments inversibles de l'anneau $\mathbb{Z}[i]$. Montrer que c'est un groupe cyclique et en donner un générateur.
- **4.** a) Pour u et v des éléments de $\mathbb{Z}[i]$, montrer que si u divise v dans $\mathbb{Z}[i]$, alors $|u|^2$ divise $|v|^2$ dans \mathbb{N} .
 - b) 2+i et 2-i sont-ils des diviseurs de 4+7i dans $\mathbb{Z}[i]$? La réciproque de la question précédente est-elle vraie?
 - c) On considère la relation binaire : $u\mathcal{R}v \Leftrightarrow u$ et v sont associés. Montrer qu'il s'agit d'une relation d'équivalence. Quelle est la classe d'équivalence d'un élément u = a + ib de $\mathbb{Z}[i]$ avec $a, b \in \mathbb{Z}$?
- **5.** a) Montrer que, pour tout nombre complexe z, il existe un entier de Gauss u tel que |z-u| < 1. On pourra s'appuyer sur un dessin pour construire l'entier de Gauss u.
 - **b)** En déduire que, pour tout couple $(u, v) \in \mathbb{Z}[i]^2$, avec $v \neq 0$, il existe un couple $(q, r) \in \mathbb{Z}[i]^2$ tel que u = vq + r avec |r| < |v|.
 - c) Le couple (q, r) est-il unique? Déterminer toutes les solutions $(q, r) \in \mathbb{Z}[i]^2$ pour u = 1 i et v = 2i.
- **6.** Montrer que l'anneau $\mathbb{Z}[i]$ est principal.

Irréductibles de $\mathbb{Z}[i]$

Un entier de Gauss u, non nul est non inversible, est dit irréductible lorsque : $\forall x, y \in \mathbb{Z}[i]$,

$$xy = u \Rightarrow x \in (\mathbb{Z}[i])^* \text{ ou } y \in (\mathbb{Z}[i])^*.$$

- 7. Montrer que, si $|u|^2$ est premier dans \mathbb{N} , alors u est irréductible dans $\mathbb{Z}[i]$.
- **8.** Les entiers 2 et 3 sont-ils irréductibles dans $\mathbb{Z}[i]$? La réciproque de la question précédente est-elle vraie?
- 9. Montrer que tout élément de $\mathbb{Z}[i]$ non inversible a un diviseur irréductible dans $\mathbb{Z}[i]$. Indication : on pourra résonner par récurrence forte sur $|x|^2$.
- **10.** Montrer que si $x \in \mathbb{Z}[i]$ est irréductible dans $\mathbb{Z}[i]$, alors \bar{x} est irréductible dans $\mathbb{Z}[i]$.

On admet pour la suite que pour $u \in \mathbb{Z}[i]$ irréductible dans $\mathbb{Z}[i]$ et $x, y \in \mathbb{Z}[i]$:

$$u \mid (x \times y) \Rightarrow u \mid x \text{ ou } u \mid y.$$

- **11.** Montrer que, si u = a + ib, avec $a \in \mathbb{Z} \setminus \{0\}$, $b \in \mathbb{Z} \setminus \{0\}$, est irréductible dans $\mathbb{Z}[i]$, alors $|u|^2$ est premier dans \mathbb{N} .
- 12. Montrer que la somme de deux carrés d'entiers relatifs n'est jamais congrue à 3 modulo 4. Montrer qu'un entier naturel congru à 3 modulo 4 premier dans \mathbb{N} est irréductible dans $\mathbb{Z}[i]$.
- 13. On admet qu'un entier naturel congru à 1 modulo 4 premier dans \mathbb{N} est toujours somme de deux carrés d'entiers naturels; en déduire qu'il n'est pas irréductible dans $\mathbb{Z}[i]$.
- 14. Quel est l'ensemble des éléments irréductibles de $\mathbb{Z}[i]$?

Exercice 1 : Nilpotents

On considère un anneau $(A; +; \times)$. Un élément a de l'anneau $(A; +; \times)$ est dit **nilpotent** quand il existe un entier naturel n dans \mathbb{N} avec $a^n = 0_A$. On notera \mathcal{N}_A l'ensemble des éléments nilpotents de l'anneau $(A; +; \times)$.

1. Quelques exemples

- a) Déterminer \mathcal{N}_A pour un anneau intègre A.
- b) Déterminer l'ensemble des éléments nilpotents de l'anneau usuel $\mathbb{Z}/21\mathbb{Z}$.
- c) Déterminer l'ensemble des éléments nilpotents de l'anneau $\mathbb{Z}/9\mathbb{Z}$.
- d) Soit p un nombre premier et $\alpha \geq 2$ un entier. On considère l'anneau $B = \mathbb{Z}/p^{\alpha}\mathbb{Z}$. Vérifier que l'ensemble B^{\times} des inversibles de B et \mathcal{N}_B forment une partition de $\mathbb{Z}/p^{\alpha}\mathbb{Z}$.

2. Structure

- a) Montrer que si a et b de A sont nilpotents et commutent, alors a + b est aussi nilpotent.
- b) Pour a et b dans A, vérifier que si ab est nilpotent alors ba aussi.
- c) Montrer que si A est un anneau commutatif, alors \mathcal{N}_A est un idéal de A.

Exercice 2

On rappelle qu'un nombre réel est dit rationnel s'il appartient à \mathbb{Q} , et qu'il est dit irrationnel sinon.

Pour tout couple d'entiers $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, la fraction p/q est dite *irréductible* si les entiers p et q sont premiers entre eux.

- 1. Recherche d'un polynôme à coefficients entiers dont $\cos\left(\frac{\pi}{5}\right)$ est racine
 - (a) Exprimer simplement les valeurs de $\cos\left(\frac{4\pi}{5}\right)$, $\cos\left(\frac{6\pi}{5}\right)$ et $\cos\left(\frac{9\pi}{5}\right)$ en fonction de $\cos\left(\frac{\pi}{5}\right)$.

Exprimer de même $\cos\left(\frac{2\pi}{5}\right)$, $\cos\left(\frac{7\pi}{5}\right)$ et $\cos\left(\frac{8\pi}{5}\right)$ en fonction de $\cos\left(\frac{3\pi}{5}\right)$.

(b) Déterminer les racines complexes de l'équation $z^5 + 1 = 0$.

Calculer leur somme, puis en déduire que $\cos\left(\frac{\pi}{5}\right) + \cos\left(\frac{3\pi}{5}\right) = \frac{1}{2}$.

(c) En déduire que $\cos\left(\frac{\pi}{5}\right)$ et $\cos\left(\frac{3\pi}{5}\right)$ sont racines du polynôme $4X^2-2X-1$.

Exprimer alors à l'aide de $\sqrt{5}$ les valeurs de $\cos\left(\frac{\pi}{5}\right)$ et $\cos\left(\frac{3\pi}{5}\right)$.

- 2. Irrationnalité de $\cos\left(\frac{k\pi}{5}\right)$ lorsque $\frac{k}{5}$ est irréductible
 - (a) En utilisant l'irrationalité du réel $\sqrt{5}$ montrer que $\cos\left(\frac{\pi}{5}\right)$ et $\cos\left(\frac{3\pi}{5}\right)$ sont irrationnels.
 - (b) Établir, si $k \in \mathbb{N}$ et si $\frac{k}{5}$ est irréductible, que les réels $\cos\left(\frac{k\pi}{5}\right)$ sont irrationnels.