Corrigé du DS1

Problème: Anneau des entiers de Gauss

Un anneau A commutatif est dit principal lorsque tout idéal de A est engendré par un élément.

Q1. On sait que les idéaux de l'anneau $(\mathbb{Z}, +, \times)$ sont les $n\mathbb{Z}$ avec $n \in \mathbb{N}$ et les idéaux de l'anneau $(\mathbb{R}[X], +, \times)$ sont les $P\mathbb{R}[X]$ avec $P \in \mathbb{R}[X]$; donc

 \mathbb{Z} et $\mathbb{R}[X]$ sont des anneaux principaux.

Propriétés de l'anneau $\mathbb{Z}[i]$

On appelle entier de Gauss un nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs : u = a + ib, $(a, b) \in \mathbb{Z}^2$. On désigne par $\mathbb{Z}[i]$ l'ensemble des entiers de Gauss.

Q2. • $\mathbb{Z}[i] \subset \mathbb{C}$;

- $1 = 1 + 0i \in \mathbb{Z}[i] \text{ car } 1, 0 \in \mathbb{Z};$
- soit $u, v \in \mathbb{Z}[i]$, donc il existe $a, b, c, d \in \mathbb{Z}$ tels que u = a + ib, v = c + id, donc :

$$u - v = (a - c) + (b - d)i \in \mathbb{Z}[i]$$

car $a-c, b-d \in \mathbb{Z}$ (\mathbb{Z} est un anneau); et

$$uv = (ac - bd) + (ad + bc) \in \mathbb{Z}[i]$$

donc:

$$\mathbb{Z}[i]$$
 est un sous-anneau de \mathbb{C} .

De plus $\mathbb C$ est un corps, donc intègre donc :

$$\mathbb{Z}[i]$$
 est intègre.

Enfin : $2 = 2 + 0i \in \mathbb{Z}[i]$, mais $\frac{1}{2} \notin \mathbb{Z}[i]$ (par unicité de la partie réelle), donc

$$\mathbb{Z}[i]$$
 n'est pas un corps.

Q3. a) Soit $u \in \mathbb{Z}[i]$, donc il existe $a, b \in \mathbb{Z}$ tels que u = a + ib et

$$|u|^2 = a^2 + b^2 \in \mathbb{Z} \text{ car } a, b \in \mathbb{Z}$$

et a^2, b^2 sont positifs comme carrés de réels ; donc : $|u|^2 \in \mathbb{N}$. D'où :

pour tout $u \in \mathbb{Z}[i], |u|^2$ est un entier naturel.

- **b)** Soit $u \in \mathbb{Z}[i]$;
- on suppose u inversible dans $\mathbb{Z}[i]$, donc il existe $v \in \mathbb{Z}[i]$ tel que uv = 1, donc : $|u| \, |v| = |1|$, donc $|u|^2 \, |v|^2 = 1$. Or $|u|^2 \, , |v|^2 \in \mathbb{N}$ d'après la question précédente, donc $|u|^2$ est inversible dans \mathbb{Z} , donc $|u|^2 \in \{-1,1\}$ et $|u|^2 \geqslant 0$, donc $|u|^2 = 1$ et |u| = 1.
- réciproquement, on suppose |u|=1, donc $|u|^2=1$, donc $u\times \bar{u}=1$, donc u est inversible dans l'anneau (commutatif) $\mathbb{Z}[i]$.

D'où:

$$u$$
 est inversible dans $\mathbb{Z}[i]$ si et seulement si $|u|=1.$

c) Les inversibles de $\mathbb{Z}[i]$ sont les éléments de $\mathbb{Z}[i]$ de module 1, c'est à dire 1, -1, i, -i, ils forment un groupe (le groupe des inversibles de l'anneau $\mathbb{Z}[i]$) cyclique engendré par i.

l'ensemble des éléments inversibles de l'anneau $\mathbb{Z}[i]$ est le groupe cyclique $\operatorname{gr}(i)$.

Q4. a) Soit $u, v \in \mathbb{Z}[i]$ tles que $u \mid v$ dans $\mathbb{Z}[i]$, donc il existe $q \in \mathbb{Z}[i]$ tel que v = qu, donc $|v|^2 = |q|^2 |u|^2$, or $|v|^2, |q|^2, |u|^2 \in \mathbb{N}$, donc : $|u|^2 \mid |v|^2$ dans \mathbb{N} .

si
$$u$$
 divise v dans $\mathbb{Z}[i]$, alors $\left|u\right|^2$ divise $\left|v\right|^2$ dans \mathbb{N} .

b) 4+7i=(2+i)(3+2i), donc

$$2+i$$
 divise $4+7i$ dans $\mathbb{Z}[i]$;

et pour $a, b \in \mathbb{Z}$:

$$4+7i = (2-i)(a+ib) \Leftrightarrow \begin{cases} 4 = 2a+b \\ 7 = -a+2b \end{cases} \quad L_2 \leftarrow 2L_2 + L_1$$
$$\Leftrightarrow \begin{cases} 4 = 2a+b \\ 18 = 5b \end{cases}$$

or l'équation 5b=18 d'inconnue $b\in\mathbb{Z}$ n'a pas de solution, donc l'équation 4+7i=(2-i)(a+ib) n'a pas de solution, donc

$$(2-i)$$
 ne divise pas $(4+7i)$ dans $\mathbb{Z}[i]$,

pourtant $|2 - i|^2 = 5$ divise $|4 + 7i|^2 = 65$, donc:

la réciproque de la question précédente est fausse.

e) On considère la relation binaire : $uRv \Leftrightarrow u$ et v sont associés.

- $\forall u \in \mathbb{Z}[i], u \mid u$, donc $u\mathcal{R}u$; \mathcal{R} est refléxive;
- soit $u, v \in \mathbb{Z}[i]$ tels que $u\mathcal{R}v$, donc $u \mid v$ et $v \mid u$ donc $v\mathcal{R}u$; \mathcal{R} est symétrique.
- soit $u, v, w \in \mathbb{Z}[i]$ tels que $u\mathcal{R}v$ et $v\mathcal{R}w$, donc $u \mid v$ et $v \mid w$ et (par transitivité de la relation \mid ,) $u \mid w$ et de même $w \mid u$, donc $u\mathcal{R}w$; \mathcal{R} est transitive.

Donc:

${\mathcal R}$ est une relation d'équivalence.

Soit $u = a + ib \in \mathbb{Z}[i]$ avec $a, b \in \mathbb{Z}$, et $v \in \mathbb{Z}[i]$

$$v \in Cl(u) \Leftrightarrow u \text{ et } v \text{ sont associés}$$

 $\Leftrightarrow \exists q \in \mathbb{Z}[i]^* \mid v = qu$
 $\Leftrightarrow v = u \text{ ou } v = -u \text{ ou } v = iu \text{ ou } v = -iu$

 $\operatorname{car} \mathbb{Z}[i]^* = \{1, -1, i, -i\}.$ D'où

$$Cl(a+ib) = \{a+ib, -b+ia, -a-ib, b-ia\}.$$

Q5. a) Soit $z \in \mathbb{C}$, donc il existe $x,y \in \mathbb{R}$ tels que z = x + iy; on sait que $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$, on pose :

$$a = \begin{cases} \lfloor x \rfloor & \text{si } \lfloor x \rfloor \leqslant x < \lfloor x \rfloor + \frac{1}{2} \\ \lfloor x \rfloor + 1 \text{ si } \lfloor x \rfloor + \frac{1}{2} \leqslant x < \lfloor x \rfloor + 1 \end{cases}$$

ainsi, dans tous les cas $|x - a| \le \frac{1}{2}$; et de même pour

$$b = \begin{cases} \lfloor y \rfloor & \text{si } \lfloor y \rfloor \leqslant y < \lfloor y \rfloor + \frac{1}{2} \\ \lfloor y \rfloor + 1 \text{ si } \lfloor y \rfloor + \frac{1}{2} \leqslant y < \lfloor y \rfloor + 1 \end{cases}$$

on obtient : $|y - b| \le \frac{1}{2}$. On pose $u = a + ib \in \mathbb{Z}[i]$, donc : $|z - u|^2 = |x - a|^2 + |y - b|^2 \le (\frac{1}{2})^2 \times 2 = \frac{1}{2} < 1$; donc : |z - u| < 1. Donc :

pour tout nombre complexe z, il existe un entier de Gauss u tel que |z-u| < 1.

b) Soit $(u, v) \in \mathbb{Z}[i]^2$, avec $v \neq 0$.

On pose $z=\frac{u}{v}\in\mathbb{C}$, d'après la question précédente, il existe $q\in\mathbb{Z}[i]$ tel que |z-q|<1, on pose r=u-qv, on a alors : u=qv+r et $|r|=|v(z-q)|=|v|\times|z-q|<|v|$ (car |z-q|<1 et |v|>0). D'où

pour tout couple
$$(u, v) \in \mathbb{Z}[i]^2$$
, avec $v \neq 0$, il existe un couple $(q, r) \in \mathbb{Z}[i]^2$ tel que $u = vq + r$ avec $|r| < |v|$.

c) Soit u = 1 - i et v = 2i, et $q, r \in \mathbb{Z}[i]^2$, analyse, on suppose u = qv + r et |r| < |v|, donc : $\frac{u}{v} = q + \frac{r}{v}$ et $\left|\frac{u}{v} - q\right| < 1$ or $\frac{u}{v} = -\frac{1}{2} - \frac{1}{2}i$, donc $q \in \{0, -1, -1 - i, -i\}$; ce qui donne $(q, r) \in \{(0, 1 - i), (-1, 1 + i), (-1 - i, -1 + i), (-i, -1 - i)\}$. synthèse : on vérifie que les 4 couples sont bien solutions.

D'où:

le couple
$$(q,r)$$
 n'est pas unique, pour $u=1-i$ et $v=2i$, les solutions sont : $(0,1-i),(-1,1+i),(-1-i,-1+i),(-i,-1-i)$.

Q6. Soit I un idéal de $\mathbb{Z}[i]$.

1er cas : $I = \{0\}$, donc : $I = 0\mathbb{Z}[i]$ est engendré par 0.

2e cas: $I \neq \{0\}$, donc $A = \{|x|^2; \text{ avec } x \in I \setminus \{0\}\}$ est une partie non vide de \mathbb{N} (d'après **Q0.a**), donc A a un minimum n_0 et il existe $x \in A$ tel que $|x|^2 = n_0$. Ainsi: $\forall u \in I \setminus \{0\}, |u| \geqslant |x|$.

Par propriété d'idéal $x\mathbb{Z}[i] \subset I$. Réciproquement, soit $u \in I$, comme $x \neq 0$, d'après la question **Q0.b**, il existe $q, r \in \mathbb{Z}[i]$ tels que u = qx + r avec |r| < |x|. Or $u, q \in I$ et I est un idéal, donc $r = u - qx \in I$ et |r| < |x|; donc r = 0, donc $u = qx \in x\mathbb{Z}[i]$.

Ce qui montre que $I = x\mathbb{Z}[i]$.

Conclusion:

 $\overline{\text{L'anneau}} \mathbb{Z}[i]$ est principal.

Irréductibles de $\mathbb{Z}[i]$

Un entier de Gauss u, non nul est non inversible, est dit irréductible lorsque : $\forall x,y\in\mathbb{Z}[i],$

$$xy = u \Rightarrow x \in (\mathbb{Z}[i])^* \text{ ou } y \in (\mathbb{Z}[i])^*.$$

Q7. Soit $u \in \mathbb{Z}[i]$ non irréductible, donc il existe $x,y \in \mathbb{Z}[i]$ non inversibles tels que u = xy. Donc $|u|^2 = |x|^2 |y|^2$, or $|u|^2, |x|^2, |y|^2 \in \mathbb{N}$; de plus x et y ne sont pas inversibles, donc $|x|^2 \neq 1, |y|^2 \neq 1$; donc $|x|^2$ n'est pas premier dans \mathbb{N} .

Conclusion, par contraposée:

si $|u|^2$ est premier dans \mathbb{N} , alors u est irréductible dans $\mathbb{Z}[i]$.

Q8. 2 = (1+i)(1-i) avec $1+i, 1-i \in \mathbb{Z}[i]$ non inversibles, donc 2 n'est pas irréductible dans $\mathbb{Z}[i]$.

On suppose par l'absurde que 3 n'est pas irréducitble dans $\mathbb{Z}[i]$, donc il existe $x,y\in\mathbb{Z}[i]$ tels que $3=x\times y$ et $|x|\neq 1$, $|y|\neq 1$. Donc : $|x|^2\,|y|^2=9=3^2$ et $|x|^2\,,|y|^2\in\mathbb{N}\smallsetminus\{1\}$, donc |x|=3 et $|y|^2=3$. On pose x=a+ib avec $a,b\in\mathbb{Z}$, donc $a^2+b^2=3$; ce qui impose $|a|\leqslant 1$ et $|b|\leqslant 1$ et aucune des combinaison possible n'est solution. D'où la contradiction.

Donc : 3 est irréductible ; pour tant $|3|^2 = 9$ n'est pas premier.

Donc:

2 est irréductible, 3 n'est pas irréductible, la réciproque de la question précédente est fausse.

Q9. Montrons par récurrence forte : $\forall n \in \mathbb{N}$ avec $n \geq 2, \mathcal{P}(n) : \forall x \in \mathbb{Z}[i], |x|^2 = n \Rightarrow x$ a un diviseur irréductible dans $\mathbb{Z}[i]$.

Initialisation pour n = 2;

Soit $x \in \mathbb{Z}[i]$ tel que $|x|^2 = 2$, donc $|x|^2$ est premier dans \mathbb{N} , donc x est irréductible dans $\mathbb{Z}[i]$.

Hérédité soit $n \ge 2$, on suppose : $\forall k \in [2; n], \mathcal{P}(n)$; soit $x \in \mathbb{Z}[i]$ tel que $|x|^2 = n + 1$.

1er cas : x est irréductible , donc x a un diviseur irréductible : lui même.

2e cas : sinon alors il existe $u, v \in \mathbb{Z}[i]$ non inversibles tels que x = uv et u, v non nuls car $uv = x \neq 0$. Donc : $|u|^2 > 1$ et $|v|^2 > 1$, donc : $2 \leq |u|^2 < |x|^2 = n + 1$ et par hypothèse de récurrence, u a un diviseur irréductible dans $\mathbb{Z}[i]$.

D'où $\mathcal{P}(n+1)$ dans tous les cas.

Conclusion : par principe de récurrence :

tout élément de $\mathbb{Z}[i]$ a un diviseur irréductible dans $\mathbb{Z}[i]$.

Q10. Soit $x \in \mathbb{Z}[i]$ irréductible dans $\mathbb{Z}[i]$ et $u, v \in \mathbb{Z}[i]$ tels que $\bar{x} = uv$; donc $x = \bar{u}\bar{v}$, or x est irréductible, donc $\bar{u} \in \mathbb{Z}[i]^* = \{1, -1, i, -1\}$ ou $\bar{v} \in \mathbb{Z}[i]^* = \{1, -1, i, -1\}$; donc : $u \in \{1, -1, -i, i\} = \mathbb{Z}[i]$ ou $v \in \mathbb{Z}[i]$.

On a montré que \bar{x} est irréductible. D'où :

si $x \in \mathbb{Z}[i]$ est irréductible dans $\mathbb{Z}[i]$, alors \bar{x} est irréductible dans $\mathbb{Z}[i]$.

On admet pour la suite que pour $u \in \mathbb{Z}[i]$ irréductible dans $\mathbb{Z}[i]$ et $x, y \in \mathbb{Z}[i]$:

$$u \mid (x \times y) \Rightarrow u \mid x \text{ ou } u \mid y.$$

Q11. Soit u = a + ib, avec $a \in \mathbb{Z} \setminus \{0\}$, $b \in \mathbb{Z} \setminus \{0\}$, irréductible dans $\mathbb{Z}[i]$ et on suppose par l'absurde que $|u|^2$ n'est pas premier. Donc il existe $k, n \ge 2$ tels que $|u|^2 = k \times n$ (quitte à échanger k et n, on suppose $k \le n$, donc $k \le |u| \le n$) et d'après la question **Q9** il existe y un diviseur irréductible de k dans $\mathbb{Z}[i]$, donc y est un diviseur irréductible de $|u|^2 = u \times \bar{u}$, donc $y \mid u$ ou $y \mid \bar{u}$.

1er cas : $y \mid u$ donc il existe $q \in \mathbb{Z}[i]$ tel que u = qy or u est irréductible et y est irréductible, donc $q \in \mathbb{Z}[i]^* = \{1, -1, i, -i\}$, donc u et y sont associés. Or $y \mid k$, donc $u \mid k$. Or $k \neq 0$, donc $|u| \leq |k|$.

Or $|k| \leq |u|$, donc |k| = |u| et u et k sont associés, ce qui est absurde car $k \in \mathbb{N}$ et u n'est ni réel ni imaginaire pur; d'où la contradiction.

2e cas $y \mid \bar{u}$: de même en remplaçant u par \bar{u} .

Donc: $|u|^2$ est premier dans \mathbb{N} .

si u = a + ib, avec $a \in \mathbb{Z} \setminus \{0\}$, $b \in \mathbb{Z} \setminus \{0\}$, est irréductible dans $\mathbb{Z}[i]$, alors $|u|^2$ est premier dans \mathbb{N} .

Q12. Soit $a, b \in \mathbb{Z}$.

1er cas: a, b sont pairs.

donc: a^2 et b^2 sont pairs et $a^2 + b^2$ est pair, donc $a^2 + b^2 \not\equiv 3$ [4].

2e cas : a, b sont impairs.

donc: a^2 et b^2 sont impairs et $a^2 + b^2$ est pair, donc $a^2 + b^2 \not\equiv 3$ [4].

3e cas: a pair et b impair.

Donc il existe $c, d \in \mathbb{Z}$ tels que a = 2c et b = 2d + 1, donc :

$$a^{2} + b^{2} = 4c^{2} + 4d^{2} + 4d + 1 \equiv 1$$
 [4]

4e cas : a impair et b pair ; de même que dans le cas précédent, $a^2+b^2\equiv 1$ [4]. Donc :

la somme de deux carrés d'entiers relatifs n'est jamais congrue à 3 modulo 4.

Soit p premier dans \mathbb{N} , on suppose par l'absurde que p n'est pas irréductible dans $\mathbb{Z}[i]$. Donc il existe $u, v \in \mathbb{Z}[i]$ non inversibles tels que p = uv; donc $|u|^2 |v|^2 = p^2$ avec $|u|^2, |v|^2 \in \mathbb{N}$ et $|u^2| \neq 1, |v|^2 \neq 1$. Comme p est premier, on en déduit $|u|^2 = p \equiv 3$ [4]. Or $|u|^2$ est la somme de deux carrés d'entiers relatifs, d'où la contradiction. Donc :

un entier naturel congru à 3 modulo 4 premier dans \mathbb{N} est irréductible dans $\mathbb{Z}[i]$.

Q13. On admet qu'un entier naturel congru à 1 modulo 4 premier dans \mathbb{N} est toujours somme de deux carrés d'entiers naturels.

Soit p premier dans \mathbb{N} tel que $p \equiv 1$ [4]; donc il existe $a, b \in \mathbb{Z}^2$ tels que $p = a^2 + b^2 = (a+ib)(a-ib)$ et $|a+ib| = |a-ib| = p \neq 1$, donc a+ib et a-ib ne sont pas inversibles. Donc: p n'est pas irréductible dans $\mathbb{Z}[i]$.

Donc:

si p est un nombre premier congru à 1 modulo 4, alors il n'est pas irréductible dans $\mathbb{Z}[i]$.

Q14. Les éléments de $\mathbb{Z}[i]$ réels ou imaginaires purs sont associés à un entier naturel; or un entier naturel non premier n'est pas irréductible dans $\mathbb{Z}[i]$, 2 est le seul nombre premier pair et il n'est pas irréductible, les nombres premiers impairs sont soit congrus à 1 modulo 4 et ne sont pas irréductibles, soit congru à 3 modulo 4 et sont premiers. Donc :

les éléments irréductibles de $\mathbb{Z}[i]$ sont :

- les nombres premiers p congrus à 3 modulo 4 et leurs associés : -p, ip, -ip;
- les éléments de la forme a+ib avec a,b entiers non nuls tels que a^2+b^2 sont premiers.

Exercice: Nilpotents

Q15. a) Soit A un anneau intègre.

- Soit a un élément nilpotent de A, donc il existe $n \in \mathbb{N}$ tel que $a^n = 0_A$. Or $a^0 = 1_A \neq 0_A$, donc $n \geqslant 1$ et $a^n = a \times \cdots \times a = 0$. Donc par intégrité de A, au moins un des facteurs de ce produit est nul, donc a = 0. On a montré que $\mathcal{N}_A \subset \{0_A\}$.
- Réciproquement $0_A^1 = 0_A$, donc $0_A \in \mathcal{N}_A$.

Donc:

$$\mathcal{N}_A = \{0_A\}.$$

b) Soit $\beta \in \mathbb{Z}/21\mathbb{Z}$ nilpotent et $b \in \mathbb{Z}$ tel que $\bar{b} = \beta$.

Il existe $n \in \mathbb{N}$ tel que $\beta^n = \overline{0}$, donc $21 \mid b^n$.

Donc : $3 \mid b^n$ et $7 \mid b^n$; et comme 3 et 7 sont premiers, $3 \mid b$ et $7 \mid b$

De plus : $3 \land 7 = 1$, donc, d'après le lemme de Gauss, $21 \mid b$, donc $\beta = \overline{0}$.

Réciproquement, $\bar{0}$ est nilpotent car $\bar{0}^1 = \bar{0}$.

Donc:

$$\mathcal{N}_{\mathbb{Z}/21\mathbb{Z}} = \{\bar{0}\}.$$

Remarque: On pouvait également remarquer qu'un inversible ne peut pas être nilpotent, car l'ensemble des inversible est un groupe multiplicatif (qui ne contient pas 0_A), il ne reste plus qu'à tester les non inversibles $\bar{0}, \bar{3}$ et $\bar{7}$.

c) Soit $\beta \in \mathbb{Z}/9\mathbb{Z}$ nilpotent et $b \in \mathbb{Z}$ tel que $\bar{b} = \beta$.

Il existe $n \in \mathbb{N}$ tel que $\beta^n = \overline{0}$, donc $9 = 3^{\overline{2}} \mid b^n$.

Donc: $3 \mid b^n$, or 3 est premier, donc $3 \mid b$, donc $\beta \in \{\bar{0}, \bar{3}, \bar{6}\}$.

Réciproquement, $\bar{0}^1 = \bar{0}, \bar{3}^2 = \bar{0}, \bar{6}^2 = \bar{0}.$

Donc:

$$\mathcal{N}_{\mathbb{Z}/9\mathbb{Z}} = \{\bar{0}, \bar{3}, \bar{6}\}.$$

d) Soit p un nombre premier et $\alpha \ge 2$ un entier et $B = \mathbb{Z}/p^{\alpha}\mathbb{Z}$.

Soit $x \in B^{\times}$, comme (B^{\times}, \times) est un groupe, pour tout $n \in \mathbb{N}, x^n \in B^{\times}$, donc $\forall n \in \mathbb{N}, x^n \neq \bar{0}$.

Donc : $B^{\times} \cap \mathcal{N}_B = \emptyset$.

Soit $x \notin B^{\times}$, et $k \in \mathbb{Z}$ tel que $\bar{k} = x$.

Donc: $k \wedge p^{\alpha} \neq 1$, or p est premier, donc $p \mid k$, donc il existe $q \in \mathbb{Z}$ tel que k = pq et $k^{\alpha} = p^{\alpha}q^{\alpha}$, donc $x^{\alpha} = \bar{0}$: x est nilpotent.

Donc: $B^{\times} \cup \mathcal{N}_B = B$.

Conclusion:

$$B^{\times}$$
 et \mathcal{N}_B forment une partition de B .

Q16. a) On suppose que a et b sont des éléments nilpotents de A et commutent, donc il existe $n_1, n_2 \in \mathbb{N}$ tels que $a^{n_1} = 0_A$ et $b^{n_2} = 0_A$. Alors, d'après la formule du binôme, comme a et b commutent :

$$(a+b)^{n_1+n_2} = \sum_{k=0}^{n_1+n_2} {n_1+n_2 \choose k} a^k b^{n_1+n_2-k}$$

$$= \sum_{k=0}^{n_1} {n_1+n_2 \choose k} a^k b^{n_1+n_2-k} + \sum_{k=n_1+1}^{n_1+n_2} {n_1+n_2 \choose k} a^k b^{n_1+n_2-k}$$

Or, pour tout $k \in [0; n_1], n_1 + n_2 - k \ge n_2$, donc $b^{n_1 + n_2 - k} = 0_A$ et

$$\sum_{k=0}^{n_1} \binom{n_1+n_2}{k} a^k b^{n_1+n_2-k} = 0_A$$

et, pour tout $k \in [0; n_1], a^k = 0_A$, donc

$$\sum_{k=n_1+1}^{n_1+n_2} \binom{n_1+n_2}{k} a^k b^{n_1+n_2-k} = 0_A.$$

Donc: $(a+b)^{n_1+n_2} = 0_A$.

Donc:

si a et b de A sont nilpotents et commutent, alors a + b est aussi nilpotent.

b) On suppose $a,b\in A$ et ab est nilpotent. Donc il existe $n\in\mathbb{N}$ tel que $(ab)^n=0_A$. Donc, par associativité :

$$(ba)^{n+1} = b(ab)^n a = b \times 0_A \times a = 0_A.$$

Donc:

Pour a et b dans A, si ab est nilpotent alors ba aussi.

- c) On suppose que A est un anneau commutatif.
- $0_A \in \mathcal{N}_A$, car $0_A^1 = 0_A$;
- d'après Q16, \mathcal{N}_A est stable par +;
- soit $a \in \mathcal{N}_A$ et $n \in \mathbb{N}$ tel que $a^n = 0_A$, donc $(-a)^n = (-1)^n 0_A = 0_A$. Donc $(-a) \in \mathcal{N}_A$.
- Soit $a \in \mathcal{N}_A$, $b \in A$ et $n \in \mathbb{N}$ tel que $a^n = 0_A$, comme A est commutatif, $(ab)^n = a^n b^n = 0_A \times b^n = 0_A$; donc $ab \in \mathcal{N}_A$.

Donc:

si A est un anneau commutatif, alors \mathcal{N}_A est un idéal de A.