Exercices

Exercice 1. Déterminer les valeurs propres et sous-espaces propres des matrices :

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

Exercice 2. Soit
$$A = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Montrer que A est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ et préciser ses éléments propres. Indication : on pourra calculer Ax avec $x = (1, j, j^2)$.

Exercice 3. Déterminer les valeurs propres et sous-espaces propres des endomorphismes :

Exercice 4. Les matrices $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ et $B = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ avec $\theta \in [0; 2\pi[$ sont-elles diagonalisables dans \mathbb{R} ? dans \mathbb{C} ?

Exercice 5. Soit
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$
.

- 1. Montrer que A est diagonalisable et déterminer son polynôme minimal.
- 2. Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 6. La matrice $A = \begin{pmatrix} \cos \alpha & -\sin \alpha & a \\ \sin \alpha & \cos \alpha & b \\ 0 & 0 & 1 \end{pmatrix}$ est-elle diagonalisable dans \mathbb{R} ?

Exercice 7. Déterminer le polynôme caractéristique, les sous-espaces propres et le polynôme minimal des matrices réelles suivantes. Préciser si elles sont diagonalisables ou trigonalisables dans $\mathcal{M}_3(\mathbb{R})$; achever alors la diagonalisation ou trigonalisation.

$$M = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix} \text{ et } N = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}.$$

Exercice 8. Soit $M \in \mathcal{M}_n(\mathbb{R})$ considérée comme un élément de $\mathcal{M}_n(\mathbb{C})$ et λ une valeur propre complexe non réelle de M.

- 1. Montrer que $\bar{\lambda}$ est une valeur propre de M de même ordre que λ .
- 2. Montrer que les sous-espaces propres associés à λ et à $\bar{\lambda}$ sont de même dimension.

Exercice 9. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$.

- 1. Montrer que A est diagonalisable dans \mathbb{C} .
- 2. Donner la forme du polynôme caractéristique de A.
- 3. Montrer que le rang de A est pair.

Exercice 10. Déterminer le polynôme caractéristique et le polynôme minimal de

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Exercice 11. Soit E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ tel que rg(u) = 1. Montrer que

u est diagonalisable $\Leftrightarrow E = \operatorname{Im} u \oplus \operatorname{Ker} u \Leftrightarrow \operatorname{tr} u \neq 0$.

Exercice 12. Soit E un \mathbb{R} -espace vectoriel et $u \in \mathcal{L}(E)$. Montrer que E a un sous-espace vectoriel de dimension 1 ou 2 stable par u.

Exercice 13. Soit

$$A = \begin{pmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 2 \end{pmatrix}$$

- 1. A est-elle diagonalisable?
- 2. Déterminer son polynôme minimal.
- 3. Calculer A^k pour tout $k \in \mathbb{N}$.

Exercice 14. Soit E un \mathbb{R} -espace vectoriel de dimension n et $f \in \mathcal{L}(E)$ tel que $f^2 + \mathrm{id}_E = 0$.

- 1. Montrer que n est pair.
- 2. Soit F un sous-espace vectoriel de E stable par f et $x \notin F$.
 - (a) Montrer que Vect(x, f(x)) est stable par f.
 - (b) Montrer que la somme Vect(x, f(x)) + F est directe.
- 3. Montrer qu'il existe une base de E dans laquelle la matrice de f est diagonale par blocs, de blocs $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Exercice 15. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 + A = -I_n$.

- 1. Montrer que n est pair.
- 2. Montrer que A est semblable à la matrice diagonale par blocs, dont les blocs diagonaux sont tous égaux à : $\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$.

Indication : on pourra s'inspirer de l'exercice précédent.

Exercice 16. Soit $A, B \in \mathcal{M}_n(\mathbb{C})$. Montrer que

$$\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset \Leftrightarrow \chi_A(B) \in \operatorname{GL}_n(\mathbb{C}).$$

Exercice 17. Exemple de trigonalisation

On note
$$A = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 2 & 0 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Calculer χ_A .
- 2. La matrice A est-elle diagonalisable?
- 3. Montrer qu'il existe $u_3 \in \mathbb{R}^3$ tel que $A^2u_3 \neq 0$.
- 4. En déduire une matrice P telle que $A = PTP^{-1}$ avec

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercice 18. Soit $A \in \mathcal{M}_2(\mathbb{Z})$ telle que $A^p = I_2$ pour un entier $p \in \mathbb{N}^*$. On pose $n = \min \{ p \in \mathbb{N}^* \mid A^p = I_2 \}$. Montrer que $n \mid 12$.

Exercice 19. Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

- 1. Soit $f,g\in\mathcal{L}(E)$ diagonalisables. Montrer que les conditions suivantes sont équivalentes
 - il existe un base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(f)$ et $\operatorname{Mat}_{\mathcal{B}}(g)$ sont diagonales;
 - f et g commutent.

Indication: penser aux sous-espaces stables.

2. Soit A une partie non vide de $\mathcal{L}(E)$ dont tous les éléments sont diagonalisables et telle que pour tout $f, g \in A, f \circ g = g \circ f$. Montrer qu'il existe une base \mathcal{B} de E telle que pour tout $f \in A, \operatorname{Mat}_{\mathcal{B}}(f)$ est diagonale.

Indication : on pourra raisonner par récurrence sur la dimension n de E en distinguant le cas où tous les éléments de A sont des homothéties.

Banque CCINP

Exercice 20 (CCINP 59). Soit n un entier naturel tel que $n \ge 2$.

Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n.

On pose : $\forall P \in E, f(P) = P - P'$.

- 1. Démontrer que f est bijectif de deux manières :
 - (a) sans utiliser de matrice de f,
 - (b) en utilisant une matrice de f.
- 2. Soit $Q\in E.$ Trouver P tel que $f\left(P\right) =Q$.

Indication : si $P \in E$, quel est le polynôme $P^{(n+1)}$?

3. f est-il diagonalisable?

Exercice 21 (CCINP 65). Soit u un endomorphisme d'un espace vectoriel E sur le corps \mathbb{K} (= \mathbb{R} ou \mathbb{C}). On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .

1. Démontrer que :

$$\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ (PQ)(u) = P(u) \circ Q(u) \ .$$

- 2. (a) Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ P(u) \circ Q(u) = Q(u) \circ P(u)$.
 - (b) Démontrer que, pour tout $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]$:

 $(P \text{ polynôme annulateur de } u) \Longrightarrow (PQ \text{ polynôme annulateur de } u)$

3. Soit $A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$. Écrire le polynôme caractéristique de A, puis en déduire que le polynôme $R = X^4 + 2X^3 + X^2 - 4X$ est un polynôme annulateur de A.

Exercice 22 (CCINP 67). Soit la matrice $M = \begin{pmatrix} 0 & a & c \\ b & 0 & c \\ b & -a & 0 \end{pmatrix}$ où a, b, c sont des réels.

M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$? M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$?

Exercice 23 (CCINP 69). On considère la matrice $A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}$ où a est un réel.

- 1. Déterminer le rang de A.
- 2. Pour quelles valeurs de a, la matrice A est-elle diagonalisable?

Exercice 24 (CCINP 70). Soit $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$.

- 1. Déterminer les valeurs propres et les vecteurs propres de A. A est-elle diagonalisable?
- 2. Soit $(a, b, c) \in \mathbb{C}^3$ et $B = aI_3 + bA + cA^2$, où I_3 désigne la matrice identité d'ordre

Déduire de la question 1. les éléments propres de B.

Exercice 25 (CCINP 71). Soit P le plan d'équation x + y + z = 0 et D la droite d'équation $x = \frac{y}{2} = \frac{z}{3}$.

- 1. Vérifier que $\mathbb{R}^3 = P \oplus D$.
- 2. Soit p la projection vectorielle de \mathbb{R}^3 sur P parallèlement à D. Soit $u = (x, y, z) \in \mathbb{R}^3$. Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .

3. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.

Exercice 26 (CCINP 72). Soit n un entier naturel non nul.

Soit f un endomorphisme d'un espace vectoriel E de dimension n, et soit e = (e_1,\ldots,e_n) une base de E.

On suppose que $f(e_1) = f(e_2) = \cdots = f(e_n) = v$, où v est un vecteur donné de E.

- 1. Donner le rang de f.
- 2. f est-il diagonalisable? (discuter en fonction du vecteur v)

Exercice 27 (CCINP 73). On pose $A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$.

1. Déterminer les valeurs propres et les vecteurs propres de A.

2. Déterminer toutes les matrices qui commutent avec la matrice $\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$. En déduire que l'ensemble des matrices qui commutent avec A est Vect (I_2, A) .

Exercice 28 (CCINP 83).

Soit u et v deux endomorphismes d'un \mathbb{R} -espace vectoriel E.

- 1. Soit λ un réel non nul. Prouver que si λ est valeur propre de $u \circ v$, alors λ est valeur propre de $v \circ u$.
- 2. On considère, sur $E = \mathbb{R}[X]$ les endomorphismes u et v définis par $u: P \longmapsto \int_1^X P$ et $v: P \longmapsto P'$.

Déterminer $Ker(u \circ v)$ et $Ker(v \circ u)$. Le résultat de la question 1. reste-t-il vrai pour $\lambda = 0$?

3. Si E est de dimension finie, démontrer que le résultat de la première question reste vrai pour $\lambda = 0$.

Indication: penser à utiliser le déterminant.

Exercice 29 (CCINP 88).

- 1. Soit E un K-espace vectoriel ($K = \mathbb{R}$ ou \mathbb{C}). Soit $u \in \mathcal{L}(E)$. Soit $P \in \mathbb{K}[X]$. Prouver que si P annule u alors toute valeur propre de u est racine de P.
- 2. Soit $n \in \mathbb{N}$ tel que $n \geq 2$. On pose $E = \mathcal{M}_n(\mathbb{R})$.

Soit $A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}}$ la matrice de E définie par $a_{i,j} = \begin{cases} 0 \text{ si } i = j \\ 1 \text{ si } i \neq j \end{cases}$.

Soit $u \in \mathcal{L}(E)$ défini par : $\forall M \in E, u(M) = M + \operatorname{tr}(M)A$.

- (a) Prouver que le polynôme $X^2 2X + 1$ est annulateur de u.
- (b) u est-il diagonalisable? Justifier votre réponse en utilisant deux méthodes (l'une avec, l'autre sans l'aide de la question 1.).

Exercice 30 (CCINP 91).

On considère la matrice $A = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 3 & -1 \\ -1 & 2 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- 1. Montrer que A n'admet qu'une seule valeur propre que l'on déterminera.
- 2. La matrice A est-elle inversible? Est-elle diagonalisable?
- 3. Déterminer, en justifiant, le polynôme minimal de A.
- 4. Soit $n \in \mathbb{N}$. Déterminer le reste de la division euclidienne de X^n par $(X-1)^2$ et en déduire la valeur de A^n .