Devoir sur table de mathématiques nº 1

jeudi 3 octobre 2024 4 heures · 12h45-16h45

- Les téléphones portables, montres connectées et calculatrices
- Au sein d'un exercice, traitez les questions dans l'ordre. Vous pouvez laisser un blanc si vous pensez revenir à la question plus tard.
- Toute communication et tout échange de matériel entre étudiant·e·s sont interdits.
- Le soin apporté à la rédaction mathématique, à la qualité de l'orthographe et de la présentation seront pris en compte dans la notation. Les défauts occasionneront des pénalités sur la note finale.

Connaissance du cours

Commencez par répondre aux questions suivantes en 1 heure maximum. Cette partie du devoir sera ramassée à 13h45.

1) Déterminer la nature des séries :

$$\sum_{n \ge 1} u_n = \sum_{n \ge 1} \frac{\cos(1/\sqrt{n}) - 1}{\tan(1/n) - 1} \quad \text{et} \quad \sum_{n \ge 1} v_n = \sum_{n \ge 1} \frac{\ln(n)}{n^{4/3}}.$$

2) Soit $a \in \mathbb{R}_+^*$ et $\sum_{n \ge 0} u_n = \sum_{n \ge 0} \binom{3n}{n} a^{-n}$. Appliquer la règle de d'Alembert à cette série.

- 3) Rappeler les définitions complètes (rédigées et avec le contexte) des termes suivants :
 - a. produit de Cauchy de deux séries;
 - **b.** famille libre;
 - c. dimension:
 - **d.** rang d'une famille de vecteurs.
- **4)** La famille (V_1, V_2, V_3) est-elle une base de \mathbb{R}^3 lorsque :

$$V_1 = \begin{pmatrix} -3 \\ \frac{1}{6} \end{pmatrix}$$
, $V_2 = \begin{pmatrix} 2 \\ -3 \\ -4 \end{pmatrix}$ et $V_3 = \begin{pmatrix} -1 \\ \frac{5}{2} \end{pmatrix}$?

5) a. Déterminez le rang de la matrice :

$$M = \begin{pmatrix} -1 & 3 & 3 & 0 \\ 2 & 0 & 6 & -1 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

- **b.** Précisez la dimension de Ker(M) et Im(M).
- **c.** Qui est l'application linéaire f canoniquement associée à M?
- **d.** f est-elle bijective? injective? surjective?
- **6) a.** Rappeler la définition des polynômes interpolateurs de Lagrange L_k aux points $a_0, a_1, \ldots, a_n \in \mathbb{C}$.
 - b. Que dire de leur somme? Le démontrer.
- 7) Récitez les développements limités usuels à l'ordre 3. Il y en avait 12 sur la feuille de révision. Écrivez-les de façon ordonnée et indiquez les liens qui les relient lorsqu'il y en a.

La suite du devoir doit être rédigée sur une copie séparée (avec sa propre en-tête).

Vous pouvez traiter les exercices dans l'ordre de votre choix.

Exercice 1

Puissances d'une matrice

On définit la matrice $M = \begin{pmatrix} -4 & 3 & -3 \\ 2 & -2 & 1 \\ 8 & -7 & 6 \end{pmatrix}$.

- 1) À l'aide d'un polynôme annulateur de M.
 - **a.** Déterminer un polynôme P annulateur de M, unitaire et de degré 3.

Aide: on pourra utiliser le résultat $M^3 = \begin{pmatrix} -10 & 9 & -9 \\ 6 & 4 & 3 \\ 24 & 21 & 3 \end{pmatrix}$.

- **b.** Factoriser le polynôme *P*.
- **c.** Déterminer le reste $R_n(X)$ dans la division euclidienne du polynôme X^n par P(X).
- **d.** En déduire une écriture explicite de M^n valable pour tout $n \in \mathbb{N}$.

On écrira la conclusion sous la forme :

$$M^n = \lambda^n A + \mu^n B + n \mu^{n-1} C,$$

où λ et μ sont deux réels explicites et A, B, C trois matrices carrées de taille 3, indépendantes de n.

2) Par réduction de la matrice M.

On introduit la matrice
$$T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$
.

- **a.** Calculer T^n pour tout $n \in \mathbb{N}$.
- **b.** Démontrer que les matrices M et T sont semblables. Vous utiliserez un raisonnement par analyse-synthèse.
- **c.** Préciser une matrice $P \in GL_3(\mathbb{R})$ telle que $M = P T P^{-1}.$
- **d.** En déduire une expression de M^n en fonction de P, de P^{-1} et d'une matrice explicite.
- **e.** Calculer P^{-1} par la méthode du miroir de Gauss-Jordan.
- f. Retrouver le résultat de la question 1d. **Conseil :** Écrire T^n sous la forme $\lambda^n A' + \mu^n B' + n \mu^{n-1} C'$ et ensuite, toujours laisser les n à l'extérieur des matrices.

Exercice 2

1) Dans cette question, on n'utilisera pas la formule de Stirling.

a. Pour tout réel $t \ge 1$, calculer à l'aide d'une intégration par parties :

$$F(t) = \int_{1}^{n} \ln(t) dt.$$

- **b.** Par la méthode des rectangles, déterminer un équivalent simple de $S_n := \sum_{k=1}^n \ln(k)$ quand $n \to \infty$.
- **c.** En déduire que : $n! = n^{n(1+o(1))}.$
- 2) Rappeler la formule de Stirling

Pour raffiner la formule de Stirling, on introduit les suites réelles $(u_n)_{n\geqslant 1}$, $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$ définies par :

$$u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$$
, $v_n = \ln(u_n)$ et $w_n = v_{n+1} - v_n$.

- 3) **a.** Démontrer que : $w_n = \frac{1}{12 n^2} + o(\frac{1}{n^2}).$
 - **b.** En déduire la nature de la série $\sum_{n \ge 1} w_n$.
- **4)** Soit $(a_n)_{n\geqslant 1}$ une suite de réels positifs et $(b_n)_{n\geqslant 1}$ une suite de réels strictement positifs, telles que

$$a_n \underset{n \to \infty}{\sim} b_n$$
 et $\sum_{n \ge 1} b_n$ converge.

a. Soit $\varepsilon > 0$. Montrer qu'il existe un entier naturel non nul n_0 tel que :

$$\forall n \ge n_0, (1-\varepsilon) b_n \le a_n \le (1+\varepsilon) b_n.$$

b. En déduire que la série numérique $\sum_{n\geqslant 1}a_n$ converge, et que les restes vérifient :

$$\sum_{k=n+1}^{\infty} a_k \sim \sum_{k=n+1}^{\infty} b_k.$$

5) Pour tout $n \in \mathbb{N}^*$, on pose $R_n := \sum_{k=n+1}^{\infty} \frac{1}{k^2}$.

À l'aide de la méthode des rectangles, déterminer un équivalent simple de R_n lorsque $n \to \infty$.

- **6) a.** Déduire des questions précédentes un équivalent de $\sum_{k=n+1}^{\infty} w_k \text{ lorsque } n \to \infty.$
 - **b.** En déduire le développement asymptotique suivant :

$$n! = s_n \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right) \right),$$

où s_n est l'expression qui apparait dans la formule de Stirling.

Exercice 3

On étudie dans cet exercice la série harmonique alternée :

$$\sum_{n \ge 1} u_n = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n}.$$

Tout au long de l'exercice, on notera $(S_n)_{n \ge 1}$ la suite des sommes partielles de cette série.

- 1) Démontrer que la série harmonique alternée est semiconvergente.
- **2) a.** Pour tout entier $k \ge 1$, calculer $\int_0^1 t^{k-1} dt$.
 - **b.** En déduire que : $\forall n \ge 1$, $S_n = \int_0^1 \frac{1 (-t)^n}{1 + t} dt$.

c. content

Justifier que : $\int_{0}^{1} \frac{(-t)^{n}}{1+t} dt \xrightarrow[n \to \infty]{} 0.$

d. Retrouver que la série harmonique alternée est convergente, et préciser la valeur de sa somme.

À partir de maintenant, on note S la somme de la série harmonique alternée, et $(R_n)_{n\geqslant 1}$ la suite des restes de cette série. On cherche à obtenir des développements asymptotiques de la suite des sommes partielles cette série.

- 3) Cette question ne nécessite pas de calculs compliqués.
 - **a.** Justifier que $R_n = O(\frac{1}{n})$.
 - **b.** En déduire le développement asymptotique suivant :

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} = \ln(2) + O(\frac{1}{n}).$$

Soit $(a_n)_{n\geqslant 1}$ une suite à termes strictement positifs, décroissante et qui tend vers 0.

On suppose que la suite $(a_n - a_{n+1})_{n \ge 1}$ est décroissante et que $a_{n+1} \underset{n \to \infty}{\sim} a_n$.

- **4) a.** Montrer que $b_n := \sum_{k=n+1}^{\infty} (-1)^k a_k$ est bien défini pour tout entier $n \ge 1$.
 - **b.** Étudier la monotonie de la suite $(|b_n|)_{n\geq 1}$.
 - **c.** Montrer que : $b_n \sim (-1)^{n+1} \frac{a_n}{2}$.

Indication. On pourra encadrer $2 \mid b_n \mid$ en utilisant la question précédente.

- **5) a.** Déduire de ce qui précède un équivalent simple du reste de la série harmonique alternée.
 - **b.** En déduire la valeur de la constante $\alpha \in \mathbb{R}$ telle que :

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} = \ln(2) + \frac{\alpha}{n} + o(\frac{1}{n}).$$