

RÉVISIONS PCSI: SOLUTIONS AQUEUSES (A/B, PRÉCIPITATION, REDOX, DIAGRAMMES E-PH) ET TITRAGES SUIVIS PAR PH-MÉTRIE, CONDUCTIMÉTRIE, COLORIMÉTRIE OU POTENTIOMÉTRIE (Exercices)

Pas d'exercices sur les piles, qui seront revues dans un prochain chapitre.

Rq: Attention les complexes ne sont plus au programme de PCSI.

CHAPITRE TC3: APPLICATIONS DU PREMIER PRINCIPE DE LA THERMODYNAMIQUE (Question de cours et exercices)

- I. TRANSFORMATIONS D'UN SYSTÈME PHYSICO-CHIMIQUE
- II. PREMIER PRINCIPE DE LA THERMODYNAMIQUE, FONCTIONS U ET H
- III. GRANDEURS DE RÉACTION
 - 1. Définitions (avancement, grandeur de réaction)
 - 2. Propriétés des grandeurs de réaction
 - 3. Expressions de l'énergie interne et de l'enthalpie de réaction
 - 4. Grandeurs tabulées (Enthalpie standard de formation, de dissociation de liaison, de changement d'état, de combustion, de réaction mettant en jeu des transferts d'électrons)
- IV. EFFET THERMIQUE D'UNE TRANFORMATION CHIMIQUE MONOBARE
 - 1. Transformation monobare et monotherme
 - 2. Réaction endothermique, réaction exothermique
 - 3. Echauffement monobare d'un système
 - 4. Transformation monobare adiabatique
- V. DÉTERMINATION DES ENTHALPIES STANDARD DE RÉACTION
 - 1. Détermination expérimentale par calorimétrie
 - 2. Détermination par le calcul : loi de Hess

CHAPITRE MQ1: ORBITALES ATOMIQUES (Question de cours uniquement ou un ex de configuration

d'atome + e de valence, le chapitre n'est pas fini : on vient de voir les règles d'établissement d'une configuration électronique d'un atome avec quelques exemples et les électrons de valence, mais pas encore pour un ion, ni l'évolution de Z* et des propriétés dans la classification)

- I. QUELQUES NOTIONS DE PHYSIQUE QUANTIQUE
 - 1. Dualité onde-corpuscule
 - 2. Notion de fonction d'onde
 - 3. Equation de Schrödinger (Pour information)
- II. CAS DE L'HYDROGÈNE ET DES IONS HYDROGÉNOÏDES
 - 1. Expression des orbitales atomiques (décomposition en parties radiale et angulaire + Nombres
 - 2. Energies associées aux fonctions d'onde de l'atome d'hydrogène (formule de E et diagramme)
 - 3. Représentation des orbitales atomiques (OA s et p seulement, la représentation des OA d n'est plus
 - 4. Extension des résultats aux ions hydrogénoïdes (forme des OA, formule de E et diagramme)
- III. CAS DES ATOMES POLYÉLECTRONIQUES
 - 1. Position du problème
 - 2. Approximation orbitalaire (= monoélectronique)
 - 3. Amélioration de l'approximation : Notion de charge effective
 - 4. OA d'un atome polyélectronique (forme des OA, levée de dégénérescence partielle de E)
 - 5. Configuration électronique d'un atome dans son état fondamental

Remarque: La partie sur la classification périodique et l'évolution des propriétés n'est pas encore traitée.

Révisions	Compétences exigibles	
Chapitre TC3 : Applications du premier principe de la thermodynamique (Cours et exercices)		
	Enoncer le premier principe et l'appliquer aux cas de transformations isochores et monobares.	
	Définir l'état standard d'un constituant selon son état physique.	
	Définir les notions de grandeur de réaction, d'enthalpie standard de réaction, d'enthalpie standard de formation, d'enthalpie standard de dissociation de liaison et d'enthalpie molaire de changement d'état.	
	Prévoir le sens et calculer la valeur du transfert thermique entre un système, siège d'une transformation physico-chimique monobare et monotherme, et le milieu extérieur.	
	Déterminer le transfert thermique dû à une transformation chimique monobare et monotherme.	
	Evaluer la température atteinte par un système siège d'une transformation physicochimique, monobare et adiabatique.	
	Etudier une transformation adiabatique et monobare et déterminer une enthalpie de réaction par calorimétrie.	
	Utiliser un cycle thermodynamique ou la loi de Hess pour déterminer une enthalpie de réaction.	
Chapitre	MQ1 : Orbitales atomiques (Cours uniquement ou exemple de configuration + e valence)	
	Définir les termes fonction d'onde, orbitale atomique, densité de probabilité de présence et connaître la décomposition des OA en partie radiale et partie angulaire.	
	Exprimer la probabilité de trouver un électron dans un volume élémentaire en faisant intervenir la fonction d'onde.	
	Dessiner l'allure des orbitales s et p.	
	Etablir la configuration électronique d'un atome ou d'un ion dans son état fondamental, r epérer les électrons de cœur et de valence, et le nombre d'électrons non appariés	
	Relier la position d'un élément dans le tableau périodique à la configuration électronique de l'atome associé dans son état fondamental. (pas encore fait)	
	Prévoir pour l'atome d'hydrogène et les ions hydrogénoïdes l'évolution du rayon et de l'énergie associés à une fonction d'onde avec le nombre quantique principal n.	
	Construire un diagramme d'énergie pour l'hydrogène, les ions hydrogénoïdes et l'atome polyélectronique.	
	Déterminer la longueur d'onde d'une radiation émise ou absorbée à partir de la transition énergétique mise en jeu et inversement.	
	Savoir manipuler les quatre nombres quantiques.	
	Prévoir pour l'atome polyélectronique l'évolution du rayon et de l'énergie en fonction de la charge effective, de l'électronégativité ou de la polarisabilité de l'atome. (pas encore fait)	

Révision	s PCSI : Titrages acido-basiques ou par précipitation (Exercices)
	Connaître les notions de couple acido-basique, polyacide, polybase, ampholyte, acide fort, acide faible, base forte, base faible
	Connaître nom, formule et caractère faible/fort des acides sulfurique, nitrique, chlorhydrique, phosphorique, acétique, du dioxyde de carbone aqueux, de la soude, la potasse, l'ion hydrogénocarbonate, l'ion carbonate, l'ammoniac.
	Déterminer l'état final d'un système siège d'une unique réaction acido-basique ou mettant en jeu un précipité.
	Connaître les principes de la pH-métrie (notamment les électrodes utilisées et le rôle de l'étalonnage du pH-mètre) de la conductimétrie (notamment le fonctionnement de la cellule conductimétrique et le lien entre conductivité et concentrations des ions) et de la potentiométrie (notamment les électrodes utilisées).
	Connaître les caractéristiques d'une réaction de titrage.
	Justifier qualitativement l'allure de la courbe de conductimétrie au cours d'un titrage.
	Tracer et exploiter des diagrammes de prédominance, ou d'existence, exploiter des diagrammes de distribution.
	Exprimer la constante d'équilibre d'une réaction en fonction de données thermodynamiques (K_a , K_e , K_s , etc).
	Savoir repérer et exploiter la ou les équivalences d'un titrage direct, savoir exploiter un titrage en retour.
	Déterminer la valeur du pK_a d'un couple acido-basique à partir d'une courbe de titrage pH -métrique.
Révision	s PCSI : Equilibres d'oxydo-réduction (Exercices)
	Connaître les notions d'oxydant, de réducteur, de couple rédox, de demi pile, de pile, de force électromotrice, de capacité d'une pile.
	Connaître les couples redox de l'eau, et des exemples d'oxydants et de réducteurs usuels : noms et formules des ions thiosulfate, permanganate, hypochlorite, du dichlore, du peroxyde d'hydrogène, du dioxygène, du dihydrogène, des métaux.
	Lier la position d'un élément dans le tableau périodique et le caractère oxydant ou réducteur du corps simple correspondant.
	Prévoir les n.o. extrêmes d'un élément à partir de sa position dans le tableau périodique
	Connaître les notions de potentiel d'électrode, potentiel standard et savoir appliquer la formule de Nernst.
	Savoir décrire les électrodes de référence (ESH, ECS, Ag/AgCl).
	Tracer et exploiter des diagrammes de prédominance ou d'existence d'espèces rédox pour prévoir les espèces incompatibles ou la nature des espèces majoritaires.
	Savoir définir et reconnaître une réaction de dismutation ou de médiamutation.
	Ecrire une demi-équation rédox, le bilan d'une réaction d'oxydoréduction et calculer sa constante d'équilibre (formule de K° sans démonstration).
	Déterminer le sens de fonctionnement d'une pile et calculer sa capacité.
	Prévoir qualitativement ou quantitativement le caractère thermodynamiquement favorisé ou
	défavorisé d'une réaction d'oxydo-réduction à partir des potentiels standard des couples.

Révisions PCSI : Diagrammes potentiel-pH (Exercices)		
Notion de prédominance (d'une espèce en solution), d'existence (d'un solide).		
Savoir déterminer le nombre d'oxydation d'un élément dans une espèce chimique.		
Allure du diagramme E-pH de l'eau.		
Associer les différents domaines d'un diagramme E-pH fourni à des espèces chimiques données.		
Retrouver la pente d'une frontière oblique.		
Retrouver la position d'une frontière verticale.		
Prévoir la stabilité d'un état d'oxydation en fonction du pH du milieu et repérer une dismutation ou une médiamutation.		
Retrouver une grandeur thermodynamique à partir d'un diagramme (pKa, Ks, E°).		
Prévoir le caractère thermodynamiquement favorisé ou non d'une transformation par superposition de diagrammes (en particulier discuter de la stabilité d'une espèce dans l'eau désaérée (H^+ ou $H_2O(I)$) ou aérée ($O_2(aq)$)).		
Confronter les prévisions à des données expérimentales et interpréter d'éventuels écarts en termes cinétiques.		