Semaine 3 : du 29 septembre au 3 octobre

Optique géométrique

- Lentilles minces sphériques dans l'approximation de GAUSS
 - Modèle de la lentille mince sphérique.
 - Formules de Descartes : relation de conjugaison (admise) et de grandissement (démontrée) avec origine au sommet.
 - Foyers et plans focaux.
 - Construction de rayons lumineux (à savoir faire sans hésitation) : image d'un point en dehors de l'axe optique, rayon émergent connaissant le rayon incident, rayon incident connaissant le rayon émergent.
 - Formules de Newton (démontrées) : relations de conjugaison et de grandissement avec origine aux foyers.
 - Condition de formation d'une image réelle d'un objet réel : nature lentille, critère D > 4f' (démontré).

• Modèles de quelques dispositifs optiques

- L'œil : description et modélisation, plage d'accommodation, limite de résolution angulaire Remarque : les défauts de l'œil et leur correction sont hors programme.
- La loupe : principe et intérêt.
- La lunette astronomique (objectif et oculaire convergents): description, utilisation du caractère afocal; tracé des rayons correspond à un faisceau incident provenant d'un objet à l'infini; définition et expression du grossissement (démontrée).

Formation expérimentale

• Mesures et incertitudes

- Variabilité de la mesure, incertitude, incertitude-type; identification des sources d'incertitudes.
- Évaluation d'une incertitude-type par une approche statistique (type A) : moyenne \overline{x} , écart-type expérimental s_x , incertitude-type associée à la moyenne $u(\overline{x})$ (validée par une simulation numérique).
- Évaluation d'une incertitude-type par une autre approche que statistique (type B) : construction d'un intervalle de valeurs représentant la mesure, incertitude-type associée à une distribution rectangulaire de demiétendue $\Delta : u(x) = \frac{\Delta}{\sqrt{3}}$ (validée par une simulation numérique).
- Propagation des incertitudes
 - * Approche par la calcul : cas d'une grandeur exprimée sous la forme d'une somme, d'une différence, d'un produit, d'un quotient et plus généralement d'une combinaison linéaire et d'un monôme.
 - * Utilisation de simulations numériques (type Monte-Carlo), avec un tableur ou Python (capacité numérique exigible) en utilisant une loi uniforme ou une loi normale (caractérisation d'une loi normale : moyenne, écart-type, intervalle de confiance associé à l'écart-type).
- Écriture du résultat d'une mesure, notion de chiffre significatif; comparaison de 2 résultats (écart normalisé).