Premier exemple
$$f(t) = \begin{cases} A\cos(\omega_m t) & \text{si } -\tau/2 < t < \tau/2 \\ 0 & \text{sinon} \end{cases}$$

$$\hat{f}(\omega) = A\tau \left(\frac{\sin((\omega - \omega_m)\tau/2)}{(\omega - \omega_m)\tau} + \frac{\sin((\omega + \omega_m)\tau/2)}{(\omega + \omega_m)\tau} \right)$$

Transformée de Fourier : quelques exemples

Lycée Victor Hugo MP*/MPI* 2025-2026

Lien entre la durée du signal et la largeur du spectre

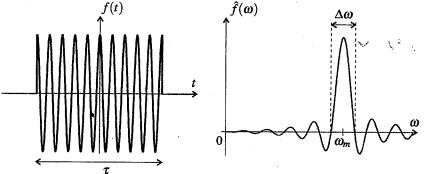


Figure A.3 – Exemple 1. La figure correspond à $\omega_m \tau = 20\pi$.

 $\hat{f}(\omega)$ est une fonction paire, maximale en $\pm \omega_m$ (voir figure). Elle ne prend de valeurs importante que sur l'intervalle compris entre ses deux premiers points d'annulation de part et d'autre de $\pm \omega_m$ qui sont $\pm \omega_m \pm \frac{2\pi}{\tau}$. Ainsi, les pulsations les plus importantes dans le signal occupent donc autour de $\pm \omega_m$ un intervalle de largeur $\Delta \omega = \frac{4\pi}{\tau}$, inversement proportionnelle à sa durée.

Deuxième exemple
$$f(t) = A \exp\left(-\frac{|t|}{\tau}\right) \cos(\omega_m t)$$

$$\hat{f}(\omega) = A \tau \left(\frac{1}{1 + \left((\omega - \omega_m)\tau\right)^2} + \frac{1}{1 + \left((\omega + \omega_m)\tau\right)^2}\right)$$

 $\hat{f}(\omega)$ est une fonction paire présentant deux pics autour de $\pm \omega_m$. Chaque pic est caractérisé par sa **largeur à mi-hauteur** $\Delta\omega$: écart entre les pulsations ω_1 et ω_2 pour lesquelles sa valeur est égale à la moitié de la valeur maximale. Pour le pic centré en ω_m , en négligeant la présence de l'autre pic, on trouve: $\omega_1 = \omega_m \pm \frac{1}{\tau}$ et $\omega_2 = \omega_m + \frac{1}{\tau}$. La largeur de l'intervalle contenant les fréquences significatives dans le signal, $\Delta\omega = \frac{2}{\tau}$, est inversement proportionnel à τ .

Troisième exemple
$$f(t) = A \exp\left(-\frac{t^2}{\tau^2}\right) \cos(\omega_m t)$$
.
$$\hat{f}(\omega) = \frac{\sqrt{\pi}}{2} A \tau \left(\exp\left(-\frac{1}{4}(\omega - \omega_m)^2 \tau^2\right) + \exp\left(-\frac{1}{4}(\omega + \omega_m)^2 \tau^2\right) \right)$$

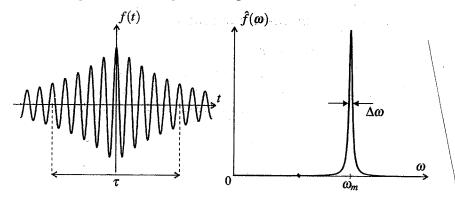


Figure A.4 – Exemple 2. La figure correspond à $\omega_m \tau = 20\pi$.

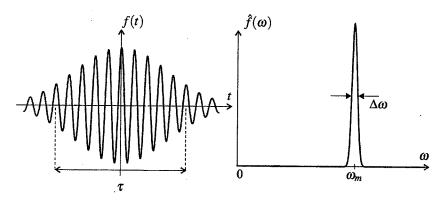


Figure A.5 – Exemple 3. La figure correspond à $\omega_m \tau = 20\pi$.

 $\hat{f}(\omega)$ est une fonction paire présentant deux pics autour de $\pm \omega_m$. On calcule pour le pic centré en ω_m , en négligeant l'autre pic, une largeur à mi-hauteur : $\Delta \omega = \frac{4\sqrt{\ln 2}}{\tau}$, inversement proportionnelle à τ .