Corrigé du devoir surveillé nº 1

Connaissance du cours

1) • Soit
$$\sum_{n \ge 1} u_n := \sum_{n \ge 1} \frac{\cos(1/\sqrt{n}) - 1}{\tan(1/n) - 1}$$
.

Au numérateur : comme $\frac{1}{\sqrt{n}} \xrightarrow[n \to \infty]{} 0$ et que $\cos(x) - 1 \underset{x \to 0}{\sim} -\frac{x^2}{2}$,

$$\cos\left(\frac{1}{\sqrt{n}}\right) - 1 \sim_{n \to \infty} - \frac{1}{2n}.$$

Au dénominateur : $\tan(1/n) - 1 \xrightarrow[n \to \infty]{} -1 \neq 0$, donc :

$$\tan(1/n)-1 \underset{n\to\infty}{\sim} -1.$$

Finalement:

$$u_n \underset{n \to \infty}{\sim} \frac{-\frac{1}{2n}}{-1} = \frac{1}{2n}.$$

De plus : $\forall n \ge 1$, $\frac{1}{2n} \ge 0$ et la série $\sum_{n \ge 1} \frac{1}{2n}$ est divergente (multiple de la série harmonique).

Par le théorème de comparaison, $\sum_{n \ge 1} u_n$ est divergente également.

• Soit
$$\sum_{n\geqslant 1} \nu_n := \sum_{n\geqslant 1} \frac{\ln(n)}{n^{4/3}}$$
.

Prenons un exposant $\alpha \in]1, \frac{4}{3}[$ (par exemple $\alpha := \frac{7}{6}$) et constatons que $v_n = o\left(\frac{1}{n^{\alpha}}\right)$:

$$n^{\alpha} \times \nu_n = \frac{\ln(n)}{n^{4/3 - \alpha}} \xrightarrow[n \to \infty]{\text{CC}} 0 \quad \text{car } \frac{4}{3} - \alpha > 0.$$

De plus : $\forall n \ge 1$, $\frac{1}{n^{\alpha}} \ge 0$ et $\sum_{n \ge 1} \frac{1}{n^{\alpha}}$ est convergente (série de Riemann d'exposant $\alpha > 1$).

Par le théorème de comparaison, $\sum_{n\geqslant 1} \nu_n$ est convergente également.

2) Soit
$$\sum_{n \ge 0} u_n = \sum_{n \ge 0} {3n \choose n} a^{-n}$$
.

Puisque : $\forall n \ge 0$, $u_n > 0$, on peut appliquer la règle de d'Alembert :

$$\forall n \ge 0, \quad \frac{u_{n+1}}{u_n} = \frac{\binom{3n+3}{n+1}a^{-(n+1)}}{\binom{3n}{n}a^{-n}} = \frac{(3n+3)!}{(n+1)!\cdot(2n+2)!} \times \frac{n!\cdot(2n)!}{(3n)!} \times a^{-n}$$

$$= \frac{(3n+3)(3n+2)(3n+1)}{(n+1)\cdot(2n+2)(2n+1)\cdot a}$$

$$\underset{n\to\infty}{\sim} \frac{(3n)^3}{n(2n)^2a} = \frac{27n^3}{4n^3a} = \frac{27}{4a}$$

$$\xrightarrow[n\to\infty]{} \frac{27}{4a}.$$

- \hookrightarrow Si $\frac{27}{4a} < 1$, c.à.d. a > 4/27: la série $\sum_{n>0} u_n$ converge.
- \hookrightarrow Si $\frac{27}{4a} > 1$, c.à.d. a < 4/27: la série $\sum_{n \ge 0} u_n$ diverge **grossièrement.**
- \hookrightarrow Si $\frac{27}{4a}=1$, c.à.d. a=4/27: la règle de d'Alembert ne permet pas de conclure.
- 3) **a.** Soit $\sum_{n\geqslant 0} u_n$ et $\sum_{n\geqslant 0} v_n$ deux séries numériques. On appelle **produit de Cauchy des séries** $\sum_{n\geqslant 0} u_n$ et $\sum_{n\geqslant 0} v_n$ la série $\sum_{n\geqslant 0} w_n$ de terme général :

$$\forall n \ge 0, \quad w_n = \sum_{\substack{k,\ell \ge 0/\\k+\ell=n}} u_k \, \nu_\ell = \sum_{k=0}^n u_k \, \nu_{n-k}.$$

b. Soit $x_1, ..., x_n$ des vecteurs d'un (même) \mathbb{K} -espace vectoriel E. On dit que **la famille** $(x_1, ..., x_n)$ **est libre** quand :

$$\forall (\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n : \quad \left[\sum_{k=1}^n \alpha_k \, x_k = 0_E \quad \Longrightarrow \quad \forall \, k \in \llbracket 1, n \rrbracket \,, \ \alpha_k = 0 \right].$$

- **c.** La **dimension** d'un espace vectoriel de dimension finie est le nombre de vecteurs que comportent chacune de ses bases.
- **d.** Le **rang d'une famille de vecteurs** est la dimension du sous-espace vectoriel qu'elle engendre : si e_1, \ldots, e_p sont des vecteurs d'un (même) espace vectoriel E :

$$\operatorname{rg}(e_1, e_2, \dots, e_p) := \dim (\operatorname{Vect}(e_1, e_2, \dots, e_p)).$$

4) Soit
$$V_1 = \begin{pmatrix} -3 \\ 1 \\ 6 \end{pmatrix}$$
, $V_2 = \begin{pmatrix} 2 \\ -3 \\ -4 \end{pmatrix}$ et $V_3 = \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix}$.
* Card $(V_1, V_2, V_3) = 3 = \dim(\mathbb{R}^3)$;

*
$$\det_{\mathcal{B}_{can}}(V_1, V_2, V_3) = \begin{vmatrix} -3 & 2 & -1 \\ 1 & -3 & 5 \\ 6 & -4 & 2 \end{vmatrix} = 0 \quad \text{car } L_3 = -2L_1$$

donc (V_1, V_2, V_3) n'est pas une base de \mathbb{R}^3 .

5) a. $\operatorname{rg}(M) = \operatorname{rg}\begin{pmatrix} -1 & 3 & 3 & 0 \\ 2 & 0 & 6 & -1 \\ 0 & 1 & 2 & 1 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} -1 & 3 & 3 & 0 \\ 0 & 6 & 12 & -1 \\ 0 & 1 & 2 & 1 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} -1 & 3 & 3 & 0 \\ 0 & 6 & 12 & -1 \\ 0 & 0 & 0 & 7 \end{pmatrix} = 3$:

on a effectué les opérations $L_2 \leftarrow L_2 + 2L_1$ puis $L_3 \leftarrow 6L_3 - L_2$ et la matrice finale est échelonnée à 3 pivots.

- **b.** On a : $\dim(\operatorname{Im} M) = \operatorname{rg}(M) = 3$ et par le théorème du rang matriciel, $\dim(\operatorname{Ker} M) = \operatorname{n}_{\operatorname{col}}(M) \dim(\operatorname{Im} M) = 4 3 = 1$.
- **c.** L'application linéaire canoniquement associée à *M* est l'application :

$$f: \qquad \begin{array}{ccc} \mathbb{R}^4 & \longrightarrow & \mathbb{R}^3 \\ V & \longmapsto & MV \\ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} & \longmapsto & \begin{pmatrix} -x+3y+3z \\ 2x+6z-t \\ y+2z+t \end{pmatrix}.$$

d. Puisque dim(Ker f) = dim(Ker M) \neq 0, Ker(f) \neq {0_{4,1}} donc f n'est pas injective (et donc pas bijective).

En outre, $\dim(\operatorname{Im} f) = \operatorname{rg}(f) = \operatorname{rg}(M) = 3$ tandis que $\operatorname{Im}(f) \subset \mathbb{R}^3$, donc $\operatorname{Im}(f) = \mathbb{R}^3$, ce qui prouve que f est surjective.

6) a. Soit $n \in \mathbb{N}^*$ et $a_0, a_1, \ldots, a_n \in \mathbb{C}$ tous distincts. Les polynômes interpolateurs de Lagrange associés à (a_0, a_1, \ldots, a_n) sont les polynômes (L_0, L_1, \ldots, L_n) définis par :

$$\forall k \in [0, n]: \quad L_k(X) = \frac{\prod\limits_{j \neq k} (X - a_j)}{\prod\limits_{j \neq k} (a_k - a_j)},$$

(où l'indice j varie entre 0 et n en évitant la valeur k)

b. La somme des polynômes interpolateurs de Lagrange vaut 1 :

$$\sum_{k=0}^{n} L_k(X) = 1.$$

Démonstration. Posons les polynômes $Q_1(X) := \sum_{k=0}^n L_k(X)$ et $Q_2(X) := 1$.

Comme tous les L_k sont de degré n, $\deg(Q_1) \leq n$ donc Q_1 et Q_2 sont tous les deux de degré au plus n.

Comparons leurs valeurs aux a_i pour $j \in [0, n]$:

$$Q_1(a_j) = \sum_{k=0}^n L_k(a_j) = 0 + \dots + 0 + 1 + 0 + \dots + 0 = 1 = Q_2(a_j).$$

Les polynômes Q_1 et Q_2 sont de degré au plus n et prennent la même valeur en (n+1) points distincts : ils sont donc égaux.

7) Développements limités usuels à l'ordre 3

' ► Famille de $\frac{1}{1-x}$:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3)$$
 (sommes géométriques)
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + o(x^3)$$
 ($x \leftarrow -x$)

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3)$$
 (primitivation)

$$\frac{1}{1+x^2} = 1 - x^2 + o\left(x^3\right) \qquad (x \leftarrow x^2 \text{ dans } \frac{1}{1+x})$$

$$\arctan x = x - \frac{1}{3}x^3 + o(x^3)$$
 (primitivation)

Exposants: pour $\alpha \in \mathbb{R}$ une constante:

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + o(x^3)$$
 (Taylor)

► Famille de l'exponentielle :

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{3!}x^3 + o(x^3)$$
 (Taylor)

$$ch(x) = 1 + \frac{1}{2}x^2 + o(x^3)$$
 (partie paire)

$$sh(x) = x + \frac{1}{3!} x^3 + o(x^3)$$
 (partie impaire)

$$\cos(x) = 1 \qquad -\frac{1}{2}x^2 \qquad +o\left(x^3\right) \qquad (\operatorname{ch}(x) \text{ altern\'e})$$

$$\sin(x) = x - \frac{1}{3!} x^3 + o\left(x^3\right)$$
 (sh(x) alterné)

$$\tan(x) = x + \frac{1}{3}x^3 + o(x^3)$$
 (sin(x)/cos(x))

Exercice 1

Soit
$$M = \begin{pmatrix} -4 & 3 & -3 \\ 2 & -2 & 1 \\ 8 & -7 & 6 \end{pmatrix}$$
.

- 1) À l'aide d'un polynôme annulateur de M.
 - **a.** * Calculons M^2 :

$$M^{2} = \begin{pmatrix} -4 & 3 & -3 \\ 2 & -2 & 1 \\ 8 & -7 & 6 \end{pmatrix} \times \begin{pmatrix} -4 & 3 & -3 \\ 2 & -2 & 1 \\ 8 & -7 & 6 \end{pmatrix} = \begin{pmatrix} -2 & 3 & -3 \\ -4 & 3 & -2 \\ 2 & -4 & 5 \end{pmatrix}.$$

On obtient de même : $M^3 = \begin{pmatrix} -10 & 9 & -9 \\ 6 & -4 & 3 \\ 24 & -21 & 20 \end{pmatrix}$

* Soit $P(X) = X^3 + aX^2 + bX + c \in \mathbb{R}[X]$. Alors

$$P(M) = 0_{3}$$

$$\iff M^{3} + a M^{2} + b M + c I_{3} = 0_{3}$$

$$\iff \begin{pmatrix} -10 & 9 & -9 \\ 6 & -4 & 3 \\ -21 & 20 \end{pmatrix} + a \begin{pmatrix} -2 & 3 & -3 \\ -4 & 3 & -2 \\ 2 & -4 & 5 \end{pmatrix} + b \begin{pmatrix} -4 & 3 & -3 \\ 2 & -2 & 1 \\ 8 & -7 & 6 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 0_{3}$$

$$\iff \begin{cases} -4 + 3a - 2b + c = 0 \\ 3 - 2a + b = 0 \\ 24 - 2a + 8b = 0 \end{cases} \iff \begin{cases} -4 + c + 3a - 2b = 0 \\ 2a - b = 3 \\ 2a - 8b = 24 \end{cases}$$

$$\iff \begin{cases} c + 3a - 2b = 4 \\ 2a - b = 3 \\ -7b = 21 \end{cases} \iff \begin{cases} c + 3a - 2b = 4 \\ 2a - b = 3 \\ b = -3 \end{cases}$$

$$\iff \begin{cases} c = -2 \\ a = 0 \\ b = -3 \end{cases}$$

Réciproquement, on vérifie que les coefficients (a, b, c) = (0, -3, -2) permettent bien d'annuler tous les coefficients de la matrice P(M).

Conclusion : Le polynôme $P := X^3 - 3X - 2$ est l'unique polynôme annulateur de M unitaire de degré 3.

b. Le polynôme P admet -1 pour racine évidente. Partant :

$$P(X) = X^3 - 3X - 2 = (X+1)(X^2 - X - 2) = (X+1)(X+1)(X-2)$$

$$=(X+1)^2(X-2).$$

c. • Fixons $n \in \mathbb{N}$. Il existe un unique couple (Q,R) de polynômes tels que :

$$\begin{cases} X^n = P(X)Q(X) + R(X) & (*) \\ \deg(R) < \deg(P) = 3. \end{cases}$$

Le polynôme R s'écrit donc : $R(X) = a_n X^2 + b_n X + c_n$ pour 3 réels a_n, b_n, c_n .

• En évaluant (*) en 2 et en -1:

$$\begin{cases} 4 a_n + 2 b_n + c_n = 2^n \\ a_n - b_n + c_n = (-1)^n. \end{cases}$$

En dérivant (*): $nX^{n-1} = P'(X)Q(X) + P(X)Q'(X) + 2a_nX + b_n$; puisque -1 est racine double de P, il annule P(X) et P'(X), d'où:

$$-2a_n + b_n = n(-1)^{n-1}$$
.

• Il s'agit alors de résoudre le système linéaire :

$$\begin{cases} 4a_n + 2b_n + c_n = 2^n \\ a_n - b_n + c_n = (-1)^n \\ -2a_n + b_n = n(-1)^{n-1} \end{cases}$$

Une résolution soigneuse par la méthode du pivot de Gauss donne :

$$\begin{cases} a_n = \frac{1}{9} \left(2^n - (-1)^n - 3 \cdot n (-1)^{n-1} \right) \\ b_n = \frac{1}{9} \left(2 \cdot 2^n - 2 (-1)^n + 3 \cdot n (-1)^{n-1} \right) \\ c_n = \frac{1}{9} \left(2^n + 8 \cdot (-1)^n + 6 \cdot n (-1)^{n-1} \right). \end{cases}$$

Conclusion : $R_n(X) = a_n X^2 + b_n X + c_n$ avec les valeurs de a_n , b_n , c_n cidessus.

d. • Puisque P est un polynôme annulateur de M, quand on applique (*) en M, on obtient :

$$M^{n} = P(M)Q(M) + R(M)$$
$$= a_{n} M^{2} + b_{n} M + c_{n} I_{3}.$$

• En utilisant les expressions de a_n , b_n et c_n de la question précédente et en factorisant par 2^n , $(-1)^n$ et $n(-1)^{n-1}$, on obtient :

$$M^{n} = 2^{n}A + (-1)^{n}B + n(-1)^{n-1}C$$
 pour $A = \frac{1}{9}(M^{2} + 2M + I_{3})$
 $B = \frac{1}{9}(-M^{2} - 2M + 8I_{3})$
 $C = \frac{1}{9}(-3M^{2} + 3M + 6I_{3}).$

Remarque. En utilisant l'expression de M^2 calculée au début de l'exercice, on trouve finalement :

$$A = \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ 2 & -2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 0 \\ -2 & 2 & -1 \end{pmatrix} \quad et \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 2 & -1 & 1 \\ 2 & -1 & 1 \end{pmatrix}.$$

2) Par réduction de la matrice M.

On introduit la matrice
$$T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$
.

a. Écrivons T = D + N, où $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ et $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

On constate que $D \times N = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} = N \times D$,

donc les matrices D et N commutent.

On peut donc appliquer la formule du binôme de Newton :

$$\forall n \in \mathbb{N}, \quad T^n = (D+N)^n = \sum_{k=0}^n \binom{n}{k} N^k D^{n-k}.$$

On remarque de plus que $N^2 = 0_3$, donc $N^k = 0_3$ dès que $k \ge 2$. On obtient :

$$T^{n} = D^{n} + nND^{n-1} + 0_{3} + \dots + 0_{3}$$

$$= \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix} + n \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix}$$

$$= \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & n(-1)^{n-1} \\ 0 & 0 & (-1)^{n} \end{pmatrix}.$$

b. Montrons que $M \stackrel{S}{\sim} T$; pour cela, on montre que M et T représentent un même endomorphisme dans 2 bases différentes.

Posons $f\in\mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associé à M (de sorte que $\max_{\mathscr{B}_{can}}(f)=M$).

Cherchons une base $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 telle que $\max_{\mathcal{B}} (f) = T$.

* Analyse. Supposons que ${\mathcal B}$ convienne. Nécessairement :

$$f(e_1) = 2e_1$$
, $f(e_2) = -e_2$ et $f(e_3) = e_2 - e_3$.

* **Synthèse.** On ne suppose plus rien sur \mathcal{B} , et on la construit. Soit $V = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^3$ quelconque. Alors :

$$f(V) = 2V \iff MV = 2V \iff (M-2I_3)V = 0_{3,1}$$

 $\iff V \in \text{Ker}(M-2I_3).$

Or: $M - I_3 = \begin{pmatrix} -6 & 3 & -3 \\ 2 & -4 & 1 \\ 8 & -7 & 4 \end{pmatrix}$. On remarque que $C_1 - 2C_3 = 0_{3,1}$:

on prend $e_1 := \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ et alors $f(e_1) = 2e_1$.

De même :

$$f(V) = -V \iff MV = -V \iff (M + I_3)V = 0_{3,1}$$

 $\iff V \in \text{Ker}(M + I_3).$

Or:
$$M - I_3 = \begin{pmatrix} -3 & 3 & -3 \\ 2 & -1 & 1 \\ 8 & -7 & 7 \end{pmatrix}$$
. Cette fois, $C_2 + C_3 = 0_{3,1}$: on prend $e_2 := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ et alors $f(e_2) = -e_2$.

Enfin:

$$f(V) = e_2 - V \iff (M + I_3) V = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

En observant $M - I_3$, on voit que $C_1 + C_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. On prend $e_3 := \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et alors $f(e_3) = e_2 - e_3$.

Reste à voir que $\mathcal{B} := (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 :

• $\operatorname{Card}(\mathcal{B}) = 3 = \dim(\mathbb{R}^3);$

•
$$\det_{\mathcal{B}_{can}}(\mathcal{B}) = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -2 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 \neq 0$$

donc \mathscr{B} est bien une base de \mathbb{R}^3 , et $\max_{\alpha}(f) = T$.

Conclusion : M et T représentent un même endomorphisme, donc elles sont semblables.

c. En reprenant les notations de la question précédente, appliquons le théorème de changement de base à l'application f, de la base canonique vers la base \mathcal{B} construite dans la synthèse. On obtient :

$$M = P T P^{-1}$$
 pour la matrice de passage $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -2 & 1 & 0 \end{pmatrix}$.

d. On déduit de ce qui précède :

$$\forall n \in \mathbb{N}: \quad M^{n} = (P T P^{-1})^{n}$$

$$= (P T P^{-1}) \cdot (P T P^{-1}) \cdot \dots \cdot (P T P^{-1})$$

$$= P T^{n} P^{-1}$$

$$= P \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & n(-1)^{n-1} \\ 0 & 0 & (-1)^{n} \end{pmatrix} P^{-1}.$$

e. Par la méthode du miroir de Gauss-Jordan, on trouve (...) :

$$P^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ -2 & 2 & -1 \\ 2 & -1 & 1 \end{pmatrix}.$$

f. Pour alléger les calculs, on écrit la matrice T^n sous la forme :

$$T^{n} = 2^{n}A' + (-1)^{n}B' + n(-1)^{n-1}C',$$

où les matrices A', B' et C' sont les matrices très simples :

$$A' := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B' := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{et} \quad C' := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Avec ces écritures :

$$\forall n \in \mathbb{N}: \quad M^n = 2^n \underbrace{\left(PA'P^{-1}\right)}_{A''} + (-1)^n \underbrace{\left(PB'P^{-1}\right)}_{B''} + n(-1)^{n-1} \underbrace{\left(PC'P^{-1}\right)}_{C''}.$$

Un calcul patient donne les résultats suivants :

$$A'' = \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ 2 & -2 & 2 \end{pmatrix}, \quad B'' = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 0 \\ -2 & 2 & -1 \end{pmatrix} \quad \text{et} \quad C'' = \begin{pmatrix} 0 & 0 & 0 \\ 2 & -1 & 1 \\ 2 & -1 & 1 \end{pmatrix}.$$

On retrouve bien la même expression que dans la première partie de l'exercice!

1) **a.** Fixons $n \in \mathbb{N}^*$ et calculons $\int_1^n \ln(t) dt$.

Exercice 2

Posons, pour tout
$$t \ge 1$$
:
$$u(t) = \ln(t) \qquad v'(t) = 1$$
$$u'(t) = \frac{1}{t} \qquad v(t) = t.$$

Les fonctions u est v étant de classe \mathscr{C}^1 sur [1,n], on peut intégrer par parties :

$$I_n = \left[t \ln(t) \right]_1^n - \int_1^n \frac{1}{t} \cdot t \, dt = n \ln(n) - 1 \ln(1) - \int_1^n dt$$
$$= n \ln(n) - n + 1.$$

b. Pour tout $n \in \mathbb{N}^*$, estimons $S_n := \sum_{k=1}^n \ln(k)$ par la méthode des rectangles. La fonction ln est continue et croissante sur $\lceil 1, +\infty \rceil$. Pour cette raison :

$$\forall k \in \mathbb{N}^*, \quad \ln(k) \le \int_k^{k+1} \ln(t) \, \mathrm{d}t \le \ln(k+1).$$

Fixons $n \in \mathbb{N}^*$ et sommons pour $k \in [1, n-1]$:

$$\sum_{k=1}^{n-1} \ln(k) \le \sum_{k=1}^{n-1} \int_{k}^{k+1} \ln(t) \, dt \le \sum_{k=1}^{n-1} \ln(k+1)$$
d'où: $S_n - \ln(n) \le \int_{1}^{n} \ln(t) \, dt \le S_n - \ln(1)$
et finalement: $I_n \le S_n \le I_n + \ln(n)$

$$\underbrace{n \ln(n) - n + 1}_{a_n} \le S_n \le \underbrace{n \ln(n) - n + 1 + \ln(n)}_{b_n}.$$

Les termes a_n et b_n s'écrivent $n \ln(n) + o(n \ln(n))$ donc sont équivalents à $n \ln(n)$. Par le théorème de l'équivalent par encadrement, on obtient :

$$S_n \underset{n\to\infty}{\sim} n \ln(n).$$

c. Remarquons que $S_n = \sum_{k=1}^n \ln(k) = \ln\left(\prod_{k=1}^n k\right) = \ln(n!)$. La question précédente donne donc :

$$\ln(n!) = S_n = n \ln(n) + o(n \ln(n))$$

$$= n \ln(n) (1 + o(1)),$$

puis en appliquant l'exponentielle :

$$n! = \exp(n \ln(n) (1 + o(1)))$$

= $\exp(n (1 + o(1)) \times \ln(n))$
= $n^{n(1+o(1))}$.

2) La formule de Stirling s'écrit : $n! \underset{n \to \infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$

Pour raffiner la formule de Stirling, on introduit les suites réelles $(u_n)_{n\geqslant 1}$, $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$ définies par :

$$u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}, \quad v_n = \ln(u_n) \quad \text{et} \quad w_n = v_{n+1} - v_n.$$

3) a. Estimons w_n :

$$\forall n \ge 1: \quad w_n = v_{n+1} - v_n = \ln(u_{n+1}) - \ln(u_n) = \ln\left(\frac{u_{n+1}}{u_n}\right)$$

$$= \ln\left(\frac{(n+1)^{n+1} e^{-(n+1)} \sqrt{n+1}}{(n+1)!} \times \frac{n!}{n^n e^{-n} \sqrt{n}}\right)$$

$$= \ln\left((n+1) \times \frac{(n+1)^n}{n^n} \times \frac{e^{-(n+1)}}{e^{-n}} \times \frac{\sqrt{n+1}}{\sqrt{n}} \times \frac{n!}{(n+1)!}\right)$$

$$= \ln\left(\left(1 + \frac{1}{n}\right)^{n+1/2} \times e^{-1}\right)$$

$$= \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) - 1.$$

Puisque $\frac{1}{n} \xrightarrow[n \to \infty]{} 0$, on peut utiliser le DL de ln(1 + x) à l'ordre 3 :

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3):$$

$$w_n = \left(n + \frac{1}{2}\right) \times \left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)\right) - 1$$

$$= (1 - 1) + \left(\frac{1}{2} - \frac{1}{2}\right) \cdot \frac{1}{n} + \left(\frac{1}{3} - \frac{1}{4}\right) \cdot \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$

$$= \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right).$$

- **b.** La question précédente montre que $w_n \underset{n \to \infty}{\sim} \frac{1}{12n^2}$; comme $\frac{1}{12n^2} \geqslant 0$ pour tout $n \geqslant 1$ et que $\sum_{n \geqslant 1} \frac{1}{12n^2}$ converge (multiple de série de Riemann d'exposant $\alpha = 2 > 1$), la série $\sum_{n \geqslant 1} w_n$ converge par le théorème de comparaison.
- **4)** Soit $(a_n)_{n\geqslant 1}$ une suite de réels positifs et $(b_n)_{n\geqslant 1}$ une suite de réels strictement positifs, telles que

$$a_n \underset{n \to \infty}{\sim} b_n$$
 et $\sum_{n \ge 1} b_n$ converge.

a. Soit $\varepsilon > 0$. Puisque $a_n \underset{n \to \infty}{\sim} b_n$, on a $\frac{a_n}{b_n} \xrightarrow[n \to \infty]{} 1$. Cette limite s'écrit en langage formel :

$$\forall \, \varepsilon > 0, \, \exists \, n_0 \in \mathbb{N}^* \, / \, \forall \, n \geqslant n_0 : \quad \left| \, \frac{a_n}{b_n} - 1 \, \right| \leqslant \varepsilon.$$

Pour notre ε , il existe donc un rang $n_0 \in \mathbb{N}^*$ tel que, pour tout $n \ge n_0$:

$$\left| \frac{a_n}{b_n} - 1 \right| \le \varepsilon, \quad \text{donc} \quad -\varepsilon \le \frac{a_n}{b_n} - 1 \le \varepsilon, \quad \text{puis} \quad 1 - \varepsilon \le \frac{a_n}{b_n} \le 1 + \varepsilon,$$

et finalement : $(1-\varepsilon)b_n \le a_n \le (1+\varepsilon)b_n$ en multipliant par $b_n \ge 0$.

b. • Fixons un $\varepsilon > 0$ (par exemple $\varepsilon = 1$). De la question précédente, retenons qu'il existe un rang $n_0 \in \mathbb{N}^*$ pour lequel :

$$\forall n \ge n_0, \quad 0 \le a_n \le (1+\varepsilon) b_n.$$

Par linéarité de la sommation, la série $\sum_{n\geqslant 1}(1+\varepsilon_n)\,b_n$ est convergente car $\sum_{n\geqslant 1}b_n$ l'est; il en est de même pour $\sum_{n\geqslant n_0}(1+\varepsilon_n)\,b_n$. Par le théorème de comparaison, la série $\sum_{n\geqslant n_0}a_n$ est donc convergente, et la série $\sum_{n\geqslant 1}a_n$ également.

• Montrons que $\sum_{k=n+1}^{\infty} a_k \sim \sum_{k=n+1}^{\infty} b_k$, c'est-à-dire :

$$\frac{\sum_{k=n+1}^{\infty} a_k}{\sum_{k=n+1}^{\infty} b_k} \xrightarrow[n \to \infty]{} 1.$$

Fixons $\varepsilon > 0$. D'après la question 4a, il existe un rang $n_0 \in \mathbb{N}$ tel que :

$$\forall k \ge n_0$$
: $(1-\varepsilon) b_k \le a_k \le (1+\varepsilon) b_k$.

Soit $n \ge n_0$ quelconque. L'encadrement ci-dessus est valable pour tout $k \ge n+1$ et fait intervenir les termes généraux de 3 séries convergentes. On peut donc sommer les inégalités pour $k \in [n+1, \infty]$:

$$(1-\varepsilon)\sum_{k=n+1}^{\infty}b_k \leq \sum_{k=n+1}^{\infty}a_k \leq (1+\varepsilon)\sum_{k=n+1}b_k.$$

Les b_k sont strictement positifs dons $\sum_{k=n+1}^{\infty}b_k>0$; on peut diviser et conserver les inégalités :

$$1 - \varepsilon \leqslant \frac{\sum_{k=n+1}^{\infty} a_k}{\sum_{k=n+1}^{\infty} b_k} \leqslant 1 + \varepsilon.$$

On vient donc de démontrer :

$$\forall \, \varepsilon > 0, \, \exists \, n_0 \in \mathbb{N} \, / \, \forall \, n \geqslant n_0 : \quad \left| \begin{array}{c} \sum\limits_{k=n+1}^{\infty} a_k \\ \\ \sum\limits_{k=n+1}^{\infty} b_k \end{array} \right| \leqslant \varepsilon \; ;$$

cela prouve l'équivalent : $\sum_{k=n+1}^{\infty} a_k \underset{n \to \infty}{\sim} \sum_{k=n+1}^{\infty} b_k.$

5) Rappelons que la série de Riemann $\sum_{n\geq 1} \frac{1}{n^2}$, donc ses restes R_n existent. Par la méthode des rectangles, on cherche à estimer :

$$R_{n,N} := \sum_{k=n+1}^{N} \frac{1}{k^2}.$$

Par les techniques habituelles, on parvient à l'encadrement :

$$\forall \, n, N \in \mathbb{N} \, / \, \, 1 \leqslant n < N \, : \quad \frac{1}{n} - \frac{1}{N} - \frac{1}{n^2} + \frac{1}{N^2} \leqslant \sum_{k=n+1}^N \frac{1}{k^2} \leqslant \frac{1}{n} - \frac{1}{N}.$$

Quand $N \to \infty$, tous les termes ci-dessus ont une limite; en passant à la limite dans les inégalités larges :

$$\forall n \ge 1: \quad \frac{1}{n} - \frac{1}{n^2} \le R_n \le \frac{1}{n}.$$

Le minorant est équivalent à $\frac{1}{n}$ car $\frac{1}{n^2}$ est négligeable devant $\frac{1}{n}$ quand $n \to \infty$. Par le théorème des gendarmes pour les équivalents :

$$R_n \sim \frac{1}{n \to \infty} \frac{1}{n}$$
.

6) a. On a vu précédemment que : $w_n \sim \frac{1}{n \to \infty} \frac{1}{12 n^2}$. À partir d'un certain rang n_0 , ces deux suites sont de même signe, donc sont tous les deux strictement positifs.

Puisque la série $\sum_{n \ge n_0} \frac{1}{n^2}$ converge, on peut appliquer le résultat de la question précédente et obtenir successivement :

$$\forall n \geq n_0: \sum_{k=n+1}^{\infty} w_k \sim \sum_{k=n+1}^{\infty} \frac{1}{12 k^2} \sim \frac{1}{n \to \infty} \frac{1}{12 n}.$$

b. Les définitions des suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ donnent :

$$n! = \frac{n^n e^{-n} \sqrt{n}}{u_n} = n^n e^{-n} \sqrt{n} \cdot e^{-\nu_n}.$$
 (*)

Cherchons un développement asymptotique de $-v_n$, en utilisant la série télescopique :

$$-\nu_n = -\sum_{k=1}^{n-1} (\nu_{k+1} - \nu_k) - \nu_1 = -\sum_{k=1}^{n-1} w_k - \nu_1 = R_{n-1} - S - \nu_1,$$

où S est la somme de la série $\sum_{n\geqslant 1} w_n$.

Dans cette écriture, $-S - v_1$ est une constante K; de plus :

$$R_{n-1} \sim_{n \to \infty} \frac{1}{12(n-1)^2} \sim_{n \to \infty} \frac{1}{12n}$$
 donc $R_{n-1} = \frac{1}{12n} + o\left(\frac{1}{n}\right)$.

On obtient alors:

$$-\nu_n = K + \frac{1}{12n} + o\left(\frac{1}{n}\right).$$

Appliquons l'exponentielle :

$$e^{-\nu_n} = e^K \times \exp\left(\frac{1}{12n} + o\left(\frac{1}{n}\right)\right)$$
$$= e^K \times \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right)$$

grâce au DL à l'ordre de la fonction exponentielle en 0. En reportant dans (*) :

$$n! = e^K \sqrt{n} \left(\frac{n}{e} \right)^n \cdot \left(1 + \frac{1}{12n} + o\left(\frac{1}{n} \right) \right).$$

Ce résultat implique que : $n! \sim e^K \sqrt{n} \left(\frac{n}{e}\right)^n$. En confrontant cet équivalent à la formule de Stirling, on constate que $e^K = \sqrt{2\pi}$.

Conclusion : On a prouvé le développement asymptotique :

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right).$$

Autour de la série harmonique alternée

Exercice 3

On étudie dans cet exercice la série harmonique alternée :

$$\sum_{n \ge 1} u_n = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n}.$$

Tout au long de l'exercice, on notera $(S_n)_{n \ge 1}$ la suite des sommes partielles de cette série.

- 1) Démontrer que la série harmonique alternée est semi-convergente.
- **2) a.** Pour tout entier $k \ge 1$, calculer $\int_0^1 t^{k-1} dt$.
 - **b.** En déduire que : $\forall n \ge 1$, $S_n = \int_0^1 \frac{1 (-t)^n}{1 + t} dt$.
 - c. content

Justifier que :
$$\int_0^1 \frac{(-t)^n}{1+t} dt \xrightarrow[n \to \infty]{} 0.$$

d. Retrouver que la série harmonique alternée est convergente, et préciser la valeur de sa somme.

À partir de maintenant, on note S la somme de la série harmonique alternée, et $(R_n)_{n\geq 1}$ la suite des restes de cette série.

On cherche à obtenir des développements asymptotiques de la suite des sommes partielles cette série.

- 3) Cette question ne nécessite pas de calculs compliqués.
 - **a.** Justifier que $R_n = O\left(\frac{1}{n}\right)$.
 - **b.** En déduire le développement asymptotique suivant :

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} = \ln(2) + O(\frac{1}{n}).$$

Soit $(a_n)_{n\geqslant 1}$ une suite à termes strictement positifs, décroissante et qui tend vers 0. On suppose que la suite $(a_n-a_{n+1})_{n\geqslant 1}$ est décroissante et que a_{n+1} $\sim a_n$.

- **4) a.** Montrer que $b_n := \sum_{k=n+1}^{\infty} (-1)^k a_k$ est bien défini pour tout entier $n \ge 1$.
 - **b.** Étudier la monotonie de la suite $(|b_n|)_{n\geq 1}$.
 - **c.** Montrer que : $b_n \sim (-1)^{n+1} \frac{a_n}{2}$

Indication. On pourra encadrer $2 \mid b_n \mid$ en utilisant la question précédente.

- **5) a.** Déduire de ce qui précède un équivalent simple du reste de la série harmonique alternée.
 - **b.** En déduire la valeur de la constante $\alpha \in \mathbb{R}$ telle que :

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} = \ln(2) + \frac{\alpha}{n} + o(\frac{1}{n}).$$