Chapitre 8

Équations différentielles

Dans ce chapitre, I est un intervalle de \mathbb{R} contenant au moins deux points, et $K = \mathbb{R}$ ou $K = \mathbb{C}$.

1 Équations différentielles linéaires du premier ordre

Dans ce paragraphe, on considère l'équation différentielle

$$y' = a(x)y + b(x), (E)$$

où $a,b:I\longrightarrow K$ sont des fonctions continues. C'est une équation différentielle linéaire du premier ordre résolue.

Définition 1.1

1. Une solution de (E) sur I est une fonction dérivable $f: I \longrightarrow K$ telle que pour tout $x \in I$,

$$f'(x) = a(x)f(x) + b(x).$$

2. L'équation différentielle homogène associée à (E) est l'équation différentielle sans second membre

$$y' = a(x)y. (E_0)$$

3. Une courbe intégrale de (E) est la courbe représentative d'une solution de (E) dans un repère donné.

1.1 Solutions d'une équation différentielle homogène

Proposition 1.2 (Ensemble des solutions d'une équation différentielle homogène)

L'ensemble S_0 des solutions de (E_0) est $\{x \longmapsto \lambda e^{A(x)}, \ \lambda \in \mathbb{R}\}$, où A est une primitive de a sur I.

Proposition 1.3 (Combinaisons linéaires)

Soient f, g deux solutions de (E_0) sur I, et $\lambda \in K$. Alors f + g et λf sont solutions de (E_0) sur I.

Remarques.

- 1. La proposition 1.3 est fausse si l'équation n'est pas homogène.
- 2. Notez qu'étudier y' + ay + b = 0 impose des changements de signes qu'il ne faut pas oublier.
- 3. On n'écrit jamais $\frac{y'}{y} = \cdots$, puisqu'on ne sait pas *a priori* si *y* s'annule.
- 4. On sait après coup que seule la solution nulle s'annule.

Exemples.

- 1. Résoudre $y' = 2y + \arctan(x)$ (E_0) .
- 2. Résoudre $x^2y' + y = e^x (E_0)$.

Proposition 1.4 (Ensemble des solutions de (E))

Soit f une solution de (E) et S_0 l'ensemble des solutions de l'équation homogène. Alors l'ensemble des solutions S de (E) est

$$\mathcal{S} = \{ f + h_0 \mid h_0 \in \mathcal{S}_0 \} .$$

Autrement dit, une fonction $g: I \longrightarrow K$ dérivable est solution de (E) si et seulement si f - g est solution de (E_0) .

Remarque.

On dit que f est une solution particulière de (E). Elle est appelée ainsi car elle a été choisie arbitrairement par rapport aux autres solutions. Par contre, il convient de noter qu'elle n'a rien de particulier par rapport aux autres solutions : rien ne permet a priori de différencier deux solutions d'une même équation différentielle sans parler de propriétés supplémentaires (par exemple conditions initiales).

Exemple.

Résoudre y' + 2y = 3.

1.2 Résolution complète

Dans ce paragraphe, on cherche à déterminer une solution particulière de l'équation, afin des les avoir toutes.

Proposition 1.5 (Principe de superposition)

Si f_1 est une solution sur I de l'équation $y' = a(x)y + b_1(x)$ et f_2 une solution de $y' = a(x)y + b_2(x)$, alors la fonction $f_1 + f_2$ est solution de l'équation $y' = a(x)y + b_1(x) + b_2(x)$.

Proposition 1.6 (Méthode de la variation de la constante)

Soit A une primitive de a sur I, et $\lambda: I \longrightarrow K$ une fonction dérivable telle que

$$\forall x \in I, \ \lambda'(x) = b(x)e^{-A(x)}.$$

Alors la fonction $f: I \longrightarrow K$ définie par

$$\forall x \in I, \ f(x) = \lambda(x)e^{A(x)}$$

est une solution de l'équation différentielle (E).

Remarques.

- 1. Il faut savoir refaire ces calculs sans les apprendre par coeur. Il faut également rester formel dans ces calculs : ne jamais remplacer A(x) par l'expression obtenue.
- 2. Attention : parfois, il y a des solutions évidentes. Il ne faut pas toujours se précipiter sur la méthode de la variation de la constante.

Méthode 1.7

Pour résoudre une équation différentielle linéaire du premier ordre :

- 1. La mettre sous la forme y' = a(x)y + b(x).
- 2. Déterminer une primitive A de a.
- 3. Résoudre l'équation y' = a(x)y.
- 4. Déterminer une solution de y' = a(x)y + b(x) (soit par la variation de la constante, soit une solution "évidente".
- 5. En déduire l'ensemble des solutions.

Exemples.

1. Les propositions 1.4, 1.2 et 1.6 permettent de résoudre complètement (E). On considère l'équation

$$xy' - 2y = x^3$$

sur \mathbb{R}^* . Elle est équivalente à

$$y' = \frac{2}{x}y + x^2.$$

On résout tout d'abord sur \mathbb{R}_+^* , puis sur \mathbb{R}_-^* . Les solutions de l'équation homogène nécessite une primitive de $x \longmapsto 2/x$, soit $x \longmapsto 2\ln(|x|) = \ln(x^2)$, et les solutions sont les $x \longmapsto \lambda x^2$, $\lambda \in \mathbb{R}$. Une solution particulière se recherche sous la forme $x \longmapsto \lambda(x)x^2$, qui est solution si et seulement si $\lambda' = 1$, donc une solution est $x \longmapsto x^3$, et l'ensemble des solutions sur \mathbb{R}_+^* comme sur \mathbb{R}_-^* est

$$\{x \longmapsto (\lambda + x)x^2, \ \lambda \in \mathbb{R}\}.$$

2. Considérons l'équation différentielle

$$(x-1)y' + xy = \sin(x)$$

sur l'intervalle $J =]1, +\infty[$. Elle est équivalente à

$$y' = -\frac{x}{x-1}y + \frac{\sin(x)}{x-1}.$$

L'ensemble des solutions de l'équation homogène est $\{x \longmapsto \lambda e^{A(x)}, \ \lambda \in \mathbb{R}\}$, où $A: J \longrightarrow \mathbb{R}$ est une primitive de la fonction

$$x \longmapsto -\frac{x}{x-1} = -1 - \frac{1}{x-1},$$

dont une primitive et $x \longmapsto -x - \ln(x-1)$ sur J. Or, si $x \in J$, on a

$$e^{-(x+\ln(x-1))} = \frac{e^{-x}}{x-1},$$

donc l'ensemble des solutions sur J de l'équation homogène est

$$\left\{x \longmapsto \lambda \frac{e^{-x}}{x-1}, \ \lambda \in \mathbb{R}\right\}.$$

On recherche maintenant une solution particulière de l'équation différentielle sous la forme

$$x \longmapsto \lambda(x) \frac{e^{-x}}{x-1}$$

où λ est une fonction dérivable sur J, telle que pour tout $x \in J$, on ait

$$\frac{\mathrm{d}\left(\lambda(x)e^{-x}/(x-1)\right)}{\mathrm{d}x} = -\frac{x}{x-1}\lambda(x)\frac{e^{-x}}{x-1} = \sin(x) \iff \lambda'(x) = \frac{\sin(x)}{x-1} \times \frac{x-1}{e^{-x}} = \sin(x)e^{x}.$$

Or, pour $x \in J$, $\sin(x)e^x = \text{Im}\left(e^{(1+i)x}\right)$, qui admet pour primitive la fonction

$$x \longmapsto \frac{e^{(1+i)x}}{1+i} = e^x \frac{1-i}{2} e^{ix},$$

dont la partie imaginaire est

$$x \longmapsto \left(-\frac{\cos(x)}{2} + \frac{\sin(x)}{2}\right)e^x,$$

qui est donc une primitive de $x \mapsto \sin(x)e^x$. Une solution particulière de notre équation est donc la fonction

$$x \longmapsto \frac{\sin(x) - \cos(x)}{2(x-1)},$$

et les fonction solutions sur J sont donc les fonctions

$$x \longmapsto \frac{\sin(x) - \cos(x) + 2\lambda e^{-x}}{2(x-1)}, \quad \lambda \in \mathbb{R},$$

ou encore les fonctions

$$x \longmapsto \frac{\sin(x) - \cos(x) + \lambda e^{-x}}{2(x-1)}, \quad \lambda \in \mathbb{R}.$$

1.3 Équations à coefficients constants

Voici des cas particuliers où une solution particulière s'obtient plus facilement qu'avec la méthode de la variation de la constante.

Méthode 1.8

On n'oublie pas le principe de superposition qui permet de combiner les méthodes suivantes.

Méthode 1.9 (Second membre polynomial)

On considère l'équation y' + ay = P(x), où $a \in K$ est une constante, et P un polynôme de degré $n \in \mathbb{N}$.

- 1. Si $a \neq 0$, l'équation a une solution particulière polynomiale de degré n.
- 2. Si a = 0, l'équation a une solution particulière de la forme $x \mapsto xQ(x)$, où Q est un polynôme de degré n: il suffit d'intégrer P!

Dans les deux cas, on détermine une telle solution par identification des coefficients.

Losque P est un polynôme constant égal à b, et $a \neq 0$, la fonction constante égale à b/a est solution.

Exemple.

Résoudre $y' + 2y = x^2 + 1$.

Méthode 1.10 (Second membre (co)sinus)

On considère l'équation $y' + ay = \lambda \sin(\alpha x)$ (ou $y' + ay = \lambda \cos(\alpha x)$), où $a, \alpha \in K$ sont des constantes.

L'équation admet une solution de la forme $x \mapsto b\sin(\alpha x) + c\cos(\alpha x)$, où $b, c \in K$ se déterminent par identification.

Exemple.

Résoudre $y' + 2y = x^2 + 1 + \sin(3x)$.

Méthode 1.11 (Second membre exponentielle)

On considère l'équation $y' + ay = \lambda e^{\alpha x}$, où $a, \alpha \in K$ sont des constantes.

- 1. Si $a \neq -\alpha$, l'équation a une solution particulière de la forme $x \longmapsto be^{\alpha x}, b \in K$.
- 2. Si $a = -\alpha$, l'équation a une solution particulière de la forme $x \longmapsto bxe^{\alpha x}$, où $b \in K$.

Dans les deux cas, on détermine b par identification.

Exemple.

Résoudre $y' + 2y = e^{-4x}$.

1.4 Résolution avec condition initiale

Corollaire 1.12 (Solutions sous forme intégrale)

Soient $x_0 \in I$ et A une primitive sur I de la fonction a. Alors les solutions sur I de l'équation (E) sont les fonctions

$$x \longmapsto \lambda e^{A(x)} + e^{A(x)} \int_{x_0}^x b(t)e^{-A(t)} dt,$$

où $\lambda \in K$.

Proposition 1.13 (Résolution avec condition initiale, problème de Cauchy)

Pour tout $x_0 \in I$ et $y_0 \in K$, il existe une unique solution f de (E) su I telle que

$$f(x_0) = y_0.$$

2 Équations différentielles linéaires du second ordre à coefficients constants

Dans ce paragraphe, on considère l'équation différentielle du second ordre à coefficients constants

$$ay'' + by' + cy = h(x), \tag{E'}$$

où $a, b, c \in K$ avec $a \neq 0$, et h est une fonction définie sur \mathbb{R} , à valeurs dans K (\mathbb{R} ou \mathbb{C}), et on recherche les fonctions solutions sur \mathbb{R} .

2.1 Généralités

Définition 2.1

1. Une solution de (E') sur \mathbb{R} est une fonction deux fois dérivable $f: \mathbb{R} \longrightarrow K$ telle que pour tout $x \in \mathbb{R}$,

$$af''(x) + bf'(x) + cf(x) = h(x).$$

2. L'équation différentielle homogène associée à (E') est l'équation différentielle sans second membre

$$ay'' + by' + cy = 0, (E_0')$$

3. Une courbe intégrale de (E') est la courbe représentative d'une solution de (E') dans un repère donné.

Proposition 2.2 (Forme des solutions)

Soit S_0 l'ensemble des solutions de (E'_0) , et g une solution de (E') sur \mathbb{R} . L'ensemble des solutions de (E') sur \mathbb{R} est

$$g + S_0 = \{g + y_0 \mid y_0 \in S_0\}.$$

Proposition 2.3 (Principe de superposition)

Soit g_1 (resp. g_2) une solution de l'équation différentielle $ay'' + by' + cy = h_1(x)$ (resp. $ay'' + by' + cy = h_2(x)$), où h_1 , h_2 sont des fonctions à valeurs dans K. Alors la fonction $g_1 + g_2$ est une solution de l'équation $ay'' + by' + cy = h_1(x) + h_2(x)$.

2.2 Résolution de l'équation homogène

Définition 2.4 (Équation caractéristique)

L'équation caractéristique de (E') est l'équation (E_c) : $ax^2 + bx + c = 0$.

Théorème 2.5 (Ensemble des solutions de (E'_0))

1. Si (E_c) admet deux solutions distinctes r_1 et r_2 (réelles ou complexes), l'ensemble des solutions de (E'_0) est

$$\{x \longmapsto \lambda e^{r_1 x} + \mu e^{r_2 x}, \quad \lambda, \mu \in K\}$$
.

2. Si (E_c) admet une racine double r, l'ensemble des solutions de (E'_0) est

$$\{x \longmapsto (\lambda + \mu x)e^{rx}, \quad \lambda, \mu \in K\}.$$

3. Si $a, b, c \in \mathbb{R}$ et si (E_c) admet deux solutions complexes non réelles $\alpha \pm i\beta$, l'ensemble des solutions **réelles** de (E'_0) est

$$\{x \longmapsto (\lambda \cos(\beta x) + \mu \sin(\beta x))e^{\alpha x}, \quad \lambda, \mu \in \mathbb{R}\},\$$

ou encore

$$\{x \longmapsto \lambda \sin(\beta x + \varphi)e^{\alpha x}, \quad \lambda, \varphi \in \mathbb{R}\}.$$

Remarque.

On peut remarquer que si f, g sont deux solutions de (E'_0) et $\lambda \in K$, alors f + g et λf sont solutions de (E'_0) sur \mathbb{R} . On reverra ces propriétés lorsqu'on parlera des espaces vectoriels.

Exemples.

- 1. Résoudre y'' + y' + y = 0.
- 2. Résoudre y'' + 2y' + y = 0.
- 3. Résoudre y'' 4y' + 3y = 0.

Proposition 2.6 (Combinaisons linéaires)

Soient f, g deux solutions de (E'_0) sur \mathbb{R} , et $\lambda \in K$. Alors f + g et λf sont solutions de (E'_0) sur \mathbb{R} .

2.3 Solution particulière pour certains seconds membres

Méthode 2.7 (Second membre exponentielle)

On suppose que le second membre de (E') est $x \mapsto Ae^{sx}$, où $s, A \in K$ sont des constantes. On note (E_c) l'équation caractéristique. Alors

- 1. Si s n'est pas solution de (E_c) , il existe une solution de la forme $x \longmapsto Ce^{sx}$, où $C \in K$.
- 2. Si s est une racine simple de (E_c) , il existe une solution de la forme $x \mapsto Cxe^{sx}$, où $C \in K$.
- 3. si s est une racine double de (E_c) , il existe une solution de la forme $x \mapsto Cx^2e^{sx}$, où $C \in K$. Pour obtenir C on injecte la solution dans l'équation, et on procède par identification.

Exemple.

Déterminez une solution de $2y'' - y' - y = 5e^{-x/2}$ et $2y'' - y' - y = -7e^{3x}$.

Méthode 2.8 (Second membre (co)sinus)

On suppose que le second membre de (E') est $x \mapsto A\cos(\omega x)$ ou $x \mapsto A\sin(\omega x)$, où $A, \omega \in \mathbb{R}$ sont des constantes. Alors

- 1. On recherche une solution pour l'équation $ay'' + by' + cy = Ae^{i\omega x}$ à l'aide de la méthode 2.7 avec $s = i\omega$.
- 2. La partie réelle de cette solution est une solution de $ay'' + by' + cy = A\cos(\omega x)$, et la partie imaginaire une solution de $ay'' + by' + cy = A\sin(\omega x)$.
- 3. Si $i\omega$ n'est pas solution de l'équation caractéristique (E_c) , on peut aussi directement chercher une solution combinaison linéaire de la forme $x \longmapsto \lambda \sin(\omega x) + \mu \cos(\omega x)$.

Exemple.

Déterminez une solution de $2y'' - y' - y = 5e^{-x/2} - 7e^{3x} + 2\sin(6x)$.

Remarques.

- 1. On utilise ces méthodes conjointement avec les propositions 2.2 et 2.5 pour résoudre l'équation différentielle.
- 2. Le principe de superposition permet alors d'obtenir des solutions particulières pour des seconds membres en $x \mapsto \operatorname{ch}(x)$ et $x \mapsto \operatorname{sh}(x)$ par exemple.

2.4 Résolution complète

Méthode 2.9 (Résolution complète)

Pour résoudre complètement E', on procède ainsi :

- 1. On résout E'_0 à l'aide du théorème 2.5.
- 2. On détermine une solution f de E' (paragraphe 2.3, principe de superposition 2.3, ou autre suivant les cas).
- 3. On conclut avec la proposition 2.2.

Exemples.

a

1. On recherche les solutions réelles de $y'' + y' + y = e^{-x/2}$. L'équation caractéristique est $x^2 + x + 1 = 0$, dont les solutions sont

$$\frac{-1 \pm i\sqrt{3}}{2}.$$

Les solutions réelles de l'équation homogène sont donc

$$\left\{ \left(x \longmapsto A \cos \left(\frac{\sqrt{3}}{2} x \right) + B \sin \left(\frac{\sqrt{3}}{2} x \right) \right) e^{-\frac{x}{2}}, \ A, B \in \mathbb{R} \right\}.$$

Comme -1/2 (coefficient de x dans $e^{-x/2}$) n'est pas solution de l'équation caractéristique, on recherche donc une solution particulière g sous la forme $x \mapsto Ce^{-x/2}$, où $C \in \mathbb{R}$. Or, si $x \in \mathbb{R}$, on

$$g''(x) + g'(x) + g(x) = e^{-x/2} \iff \frac{3}{4}Ce^x = e^x \iff C = \frac{4}{3},$$

car $e^{-x/2} \neq 0$ et $x \mapsto \frac{4}{3}e^{-x/2}$ est une solution particulière. L'ensemble des solutions est donc

$$\left\{x \longmapsto \frac{4}{3}e^{-x/2} + \left(A\cos\left(\frac{\sqrt{3}}{2}x\right) + B\sin\left(\frac{\sqrt{3}}{2}x\right)\right)e^{-\frac{x}{2}}, \ A, B \in \mathbb{R}\right\}.$$

2. On recherche les solutions réelles de $y'' + 2y' + y = e^{-x}$. L'équation caractéristique est $x^2 + 2x + 1 = 0$, qui admet -1 comme racine double. Les solutions réelles de l'équation homogène sont donc

$$\{x \longmapsto (Ax+b)e^{-x}, A, B \in \mathbb{R}\}.$$

Comme -1 (coefficient de $e^{-x} = e^{-1 \times x}$) est racine double de l'équation caractéristique, on recherche donc une solution particulière g sous la forme $x \mapsto Cx^2e^{-x}$, où $C \in \mathbb{R}$. Or, pour $x \in \mathbb{R}$, on a

$$g''(x) + 2g'(x) + g(x) = e^{-x} \iff C = \frac{1}{2}.$$

L'ensemble des solutions est donc

$$\left\{x \longmapsto \frac{x^2}{2}e^{-x} + (Ax+B)e^{-x}, \ A, B \in \mathbb{R}\right\}.$$

3. On recherche les solutions réelles de $y'' - 4y' + 3y = \operatorname{sh}(x)$. L'équation caractéristique est $x^2 - 4x + 3 = 0$, dont les racines sont 1 et 3. Les solutions réelles de l'équation homogène sont donc

$$\{x \longmapsto Ae^x + Be^{3x}, A, B \in \mathbb{R}\}.$$

On recherche maintenant une solution particulière. Comme pour tout réel x on a sh $(x)=(e^x-e^{-x})/2$, on recherche une solution particulière pour un second membre égal à $e^x/2$, puis une autre pour $e^{-x}/2$, et on conclu par le principe de superposition. Comme -1 (coefficient de $e^{-x}=e^{-1\times x}$) n'est pas racine de l'équation caractéristique, on recherche une solution particulière sous la forme $x\longmapsto Ce^{-x}, C\in\mathbb{R}$. On trouve

$$x \longmapsto \frac{1}{16}e^{-x}$$
.

Enfin, 1 est racine simple du polynôme caractéristique, donc on recherche une solution particulière sous la forme $x \longmapsto Cxe^x$ où $C \in \mathbb{R}$. On trouve

$$x \longmapsto -\frac{1}{4}xe^x$$
.

L'ensemble des solutions est donc

$$\left\{ x \longmapsto -\frac{1}{4} (x + A') e^x - \frac{1}{16} e^{-x} + B e^{3x}, A', B \in \mathbb{R} \right\}.$$

Proposition 2.10 (Résolution avec conditions initiales, problème de Cauchy)

Soient $x_0 \in \mathbb{R}$ et $y_0, y_0' \in K$. Il existe une unique solution h de (E') telle que

$$h(x_0) = y_0, \qquad h'(x_0) = y_0'.$$