ESPACES VECTORIELS NORMÉS

Cours (Première partie)

Dans tout ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et E est un \mathbb{K} -espace vectoriel.

I. Norme

A. Définition d'une norme

Définition 1

Soit E un \mathbb{K} -espace vectoriel.

On appelle $norme \ sur \ E$ toute application $\|.\|$ de E dans $\mathbb R$ vérifiant les propriétés suivantes :

- $\star \ \forall u \in E, \|u\| \geqslant 0$
- * $S\'{e}paration : \forall u \in E, [\|u\| = 0 \Rightarrow u = 0_E]$
- * $Homog\acute{e}n\acute{e}it\acute{e}: \forall u \in E, \forall \lambda \in \mathbb{K}, \|\lambda u\| = |\lambda| \|u\|$
- * Inégalité triangulaire : $\forall (u, v) \in E^2$, $||u + v|| \le ||u|| + ||v||$.

Pour $u \in E$, on dit que ||u|| est la norme de u.

Le couple $(E, \|.\|)$ est appelé espace vectoriel normé.

Exemple : La valeur absolue est une norme sur \mathbb{R} et le module est une norme sur \mathbb{C} . Ainsi, $(\mathbb{K}, |.|)$ est un espace vectoriel normé.

Notons les conséquences suivantes :

- On a $||0_E|| = 0$.
- $\blacktriangleright \ \text{ Pour tout } u \in E, \text{ on a } \|-u\| = \|u\|.$
- ▶ Un vecteur est dit *unitaire* ou *normé* lorsque sa norme est égale à 1. Si $u \in E$ avec $u \neq 0_E$ alors $\frac{u}{\|u\|}$ est un vecteur unitaire.
- ► Généralisation de l'inégalité triangulaire :

On a pour tout
$$(u_1, ..., u_n) \in E^n$$
, $\left\| \sum_{i=1}^n u_i \right\| \le \sum_{i=1}^n \|u_i\|$.

Proposition 2 (Seconde inégalité triangulaire)

On a pour tout $(u, v) \in E^2$:

$$||u|| - ||v||| \le ||u - v||.$$

B. Exemples fondamentaux

Proposition 3 (Norme euclidienne)

Soit $(E, \langle ., . \rangle)$ un espace préhilbertien réel c'est-à-dire un \mathbb{R} -espace vectoriel muni d'un produit scalaire.

Pour tout $u \in E$, on pose $||u|| = \sqrt{\langle u, u \rangle}$.

On définit ainsi une norme appelée norme euclidienne associée au produit scalaire $\langle .,. \rangle$.

Exemples:

▶ $E = \mathcal{M}_{n,1}(\mathbb{R})$ (pour $n \in \mathbb{N}^*$) muni du produit scalaire canonique :

$$\forall (U, V) \in \left(\mathcal{M}_{n,1}(\mathbb{R})\right)^2, \ \langle U, V \rangle = U^\mathsf{T} V = \sum_{i=1}^n u_i v_i \text{ en notant } U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \text{ et } V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}.$$

La norme euclidienne associée est définie par :

$$\forall U \in \mathcal{M}_{n,1}(\mathbb{R}), \ \|U\| = \sqrt{U^{\mathsf{T}}U} = \sqrt{\sum_{i=1}^{n} u_i^2} \text{ en notant } U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}.$$

▶ $E = \mathscr{C}([a,b],\mathbb{R})$ (pour $(a,b) \in \mathbb{R}^2$, a < b) muni du produit scalaire :

$$\forall (f,g) \in \left(\mathscr{C}([a,b],\mathbb{R})\right)^2, \ \langle f,g \rangle = \int_a^b f(t)g(t) \, \mathrm{d}t.$$

La norme euclidienne associée est définie par :

$$\forall f \in \mathscr{C}([a,b],\mathbb{R}), \|f\| = \sqrt{\int_a^b (f(t))^2 dt}.$$

Proposition 4 (Normes sur \mathbb{K}^n)

- Pour tout $u = (u_1, \dots, u_n) \in \mathbb{K}^n$, on pose $||u||_1 = \sum_{i=1}^n |u_i|$. On définit ainsi une norme appelée *la norme 1*.
- Pour tout $u = (u_1, ..., u_n) \in \mathbb{K}^n$, on pose $||u||_2 = \sqrt{\sum_{i=1}^n |u_i|^2}$. On définit ainsi une norme appelée *la norme 2*. Lorsque $\mathbb{K} = \mathbb{R}$, c'est la norme euclidienne associée au produit scalaire canonique.
- ▶ Pour tout $u = (u_1, ..., u_n) \in \mathbb{K}^n$, on pose $||u||_{\infty} = \max_{1 \leq i \leq n} |u_i|$. On définit ainsi une norme appelée *la norme infinie*.

Proposition 5 (Norme infinie sur $\mathcal{B}(I,\mathbb{K})$)

Soit I un intervalle de \mathbb{R} non vide.

On note $\mathcal{B}(I,\mathbb{K})$ l'espace vectoriel des fonctions bornées de I dans \mathbb{K} .

Pour tout $f \in \mathcal{B}(I, \mathbb{K})$, on pose $||f||_{\infty}^{I} = \sup |f(t)|$.

On définit ainsi une norme appelée la norme infinie ou la norme de la convergence uniforme.

Utile: Si A est une partie non vide de \mathbb{R} et k est un réel positif alors Sup(kA) = kSup(A).

C. DISTANCE ASSOCIÉE À UNE NORME

Définition 6

On appelle $distance \ sur \ E$ toute application d de E^2 dans $\mathbb R$ vérifiant les propriétés suivantes .

- $\star \ \forall (u,v) \in E^2, \ d(u,v) \geqslant 0$
- * Séparation : $\forall (u, v) \in E^2$, $[d(u, v) = 0 \Leftrightarrow u = v]$
- * Symétrie: $\forall (u, v) \in E^2, d(u, v) = d(v, u)$
- * Inégalité triangulaire : $\forall (u, v, w) \in E^3$, $d(u, w) \leq d(u, v) + d(v, w)$.

Proposition 7

Soit $(E, \|.\|)$ un espace vectoriel normé.

L'application $d: E^2 \longrightarrow \mathbb{R}$ est une distance sur E.

On dit que d est la distance associée à la norme $\|.\|$.

D. NORMES ÉQUIVALENTES

Définition 8

Deux normes N_1 et N_2 définies sur E sont dites équivalentes lorsqu'il existe deux réels strictement positifs α et β tels que :

$$\forall u \in E, \ \alpha N_2(u) \leqslant N_1(u) \leqslant \beta N_2(u).$$

- ▶ On notera que cette notion est indépendante de l'ordre des normes.
- ▶ Si les normes N_1 et N_2 sont équivalentes et les normes N_2 et N_3 sont équivalentes alors les normes N_1 et N_3 sont équivalentes.

Exemple 1: Montrer que les normes $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$ sur \mathbb{K}^n sont équivalentes.

Exemple 2: On note $E = \mathcal{C}([0,1],\mathbb{R})$.

Pour tout $f \in E$, on pose $||f||_1 = \int_0^1 |f(t)| dt$ et $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$.

- 1. Montrer qu'il existe $\alpha > 0$ tel que pour tout $f \in E$, $||f||_1 \le \alpha ||f||_{\infty}$.
- 2. Pour tout $n \in \mathbb{N}$, on pose $f_n : t \mapsto t^n$. En utilisant la suite de fonctions (f_n) , montrer que les normes $\|.\|_1$ et $\|.\|_{\infty}$ ne sont pas équivalentes.

3

Pour montrer que deux normes N_1 et N_2 ne sont pas équivalentes, il suffit de trouver une suite (u_n) de vecteurs non nuls de E telle que $\lim_{n\to+\infty} \frac{N_1(u_n)}{N_2(u_n)} = 0$ ou $\lim_{n\to+\infty} \frac{N_1(u_n)}{N_2(u_n)} = +\infty$.

Théorème 9

Si E est un espace vectoriel de dimension finie alors toutes les normes définies sur E sont équivalentes.

Ce n'est pas le cas lorsque l'espace vectoriel n'est pas de dimension finie (cf exemple 2).

II. Suites vectorielles

Soit $(E, \|.\|)$ un espace vectoriel normé.

On s'intéresse dans ce paragraphe aux suites $(u_n)_{n\in\mathbb{N}}$ à valeurs dans $(E, \|.\|)$ c'est-à-dire telles que pour tout $n \in \mathbb{N}$, u_n est un vecteur de E.

A. Suites bornées

Définition 10

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée pour la norme $\|.\|$ lorsqu'il existe $r\in\mathbb{R}_+$ tel que pour tout $n\in\mathbb{N}$, on a $\|u_n\|\leqslant r$.

On notera que la notion de suite bornée dépend de la norme.

Cependant, si deux normes sont équivalentes alors toute suite bornée pour l'une est bornée pour l'autre. Ainsi, lorsque E est de dimension finie, la notion de suite bornée ne dépend pas de la norme utilisée.

B. Suites convergentes/divergentes

1. Définition

Définition 11

▶ Soit $\ell \in E$. On dit que la suite $(u_n)_{n \in \mathbb{N}}$ converge vers ℓ pour la norme $\|.\|$ lorsque :

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ \text{tel que} \ \forall n \in \mathbb{N} \ \text{avec} \ n \geqslant n_0, \ \|u_n - \ell\| \leqslant \varepsilon.$$

On note alors $\lim_{n\to+\infty} u_n = \ell$.

- ▶ Lorsque la suite $(u_n)_{n \in \mathbb{N}}$ ne converge pas, on dit qu'elle diverge.
- \blacktriangleright Dans ($\mathbb{K}, |.|$), on retrouve les notions connues.
- ▶ On notera que ces notions dépendent de la norme. Cependant, si deux normes sont équivalentes alors toute suite convergente pour l'une est convergente l'autre, avec la même limite.

▶ Illustration graphique dans \mathbb{R}^2 muni de la norme $\|.\|_2$.

Proposition 12

On a l'équivalence :

$$\lim_{n \to +\infty} u_n = \ell \Leftrightarrow \lim_{n \to +\infty} \underbrace{\|u_n - \ell\|}_{\text{suite r\'eelle}} = 0$$

Exemple 3: Pour tout $n \in \mathbb{N}^*$, on définit la fonction f_n par : $\forall t \in [0,1], f_n(t) = t^{1/n}$.

- 1. Montrer que la suite $(f_n)_{n \in \mathbb{N}^*}$ converge vers la fonction constante égale à 1 dans l'espace vectoriel normé $(\mathscr{C}([0,1],\mathbb{R}),\|.\|_1)$.
- 2. La suite $(f_n)_{n \in \mathbb{N}^*}$ converge-t-elle vers la fonction constante égale à 1 dans l'espace vectoriel normé $(\mathscr{C}([0,1],\mathbb{R}),\|.\|_{\infty})$?

Exemple 4: Montrer que si $\lim_{n\to+\infty}u_n=\ell$ alors $\lim_{n\to+\infty}\|u_n\|=\|\ell\|$.

2. Propriétés

Proposition 13

- ▶ Lorsqu'elle existe, la limite est unique.
- ▶ Toute suite convergente est bornée.
- ▶ Si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ alors toute suite extraite $(u_{\varphi(n)})_{n\in\mathbb{N}}$, où φ est une fonction strictement croissante de \mathbb{N} dans \mathbb{N} , converge vers ℓ .

Proposition 14 (Opérations sur les limites)

- Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ à valeurs dans E convergent respectivement vers ℓ_1 et ℓ_2 alors pour tout $\lambda \in \mathbb{K}$, la suite $(\lambda u_n + v_n)_{n\in\mathbb{N}}$ converge vers $\lambda \ell_1 + \ell_2$. On en déduit que l'ensemble des suites convergentes de E est un \mathbb{K} -espace vectoriel.
- ▶ Si la suite $(u_n)_{n\in\mathbb{N}}$ à valeurs dans E converge vers ℓ et la suite $(\lambda_n)_{n\in\mathbb{N}}$ à valeurs dans \mathbb{K} converge vers λ alors la suite $(\lambda_n u_n)_{n\in\mathbb{N}}$ converge vers $\lambda\ell$.

3. Cas de la dimension finie

Lorsque E est de dimension finie, la notion de suite convergente et la valeur de sa limite le cas échéant ne dépendent pas de la norme utilisée.

Proposition 15 (Suites de coordonnées)

On suppose que E est de dimension finie $p \in \mathbb{N}^*$. Soit $\mathscr{B} = (e_1, \dots, e_p)$ une base de E. Pour tout $n \in \mathbb{N}$, on note $u_{n,1}, \dots, u_{n,p}$ les coordonnées de u_n dans la base \mathscr{B} . Soit $\ell \in E$. On note ℓ_1, \dots, ℓ_p les coordonnées de ℓ dans la base \mathscr{B} . On a l'équivalence :

$$\lim_{n\to +\infty} u_n = \ell \iff \forall k \in [\![1,p]\!], \ \lim_{n\to +\infty} u_{n,k} = \ell_k.$$

En d'autres termes, la suite $(u_n)_{n\in\mathbb{N}}$ converge dans E si et seulement si toutes ses suites de coordonnées convergent dans \mathbb{K} .

On a dans ce cas :
$$\lim_{n \to +\infty} u_n = \sum_{k=1}^p \left(\lim_{n \to +\infty} u_{n,k} \right) e_k$$
.

Exemple 5:

1. Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}^*}$ de \mathbb{R}^2 définie par :

$$\forall n \in \mathbb{N}^*, \ u_n = \left(n\sin(1/n), \left(1 + 1/n\right)^n\right).$$

2. Soit $N \in \mathbb{N}^*$. Étudier la convergence de la suite $(P_n)_{n \in \mathbb{N}^*}$ de $\mathbb{R}_N[X]$ définie par :

$$\forall n \in \mathbb{N}^*, \ P_n = \sum_{k=0}^N \frac{k}{n} X^k.$$

- 3. (a) Déterminer $\lim_{n \to +\infty} \begin{pmatrix} \frac{1}{n} & 1 & -\frac{1}{n} \\ 2 + \frac{1}{n} & \frac{2}{n} & 2 \\ \frac{1}{n} & -\frac{1}{n} & -1 \end{pmatrix}$.
 - (b) Montrer que si $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ sont deux suites de $\mathscr{M}_p(\mathbb{K})$ convergeant respectivement vers A et B alors la suite $(A_nB_n)_{n\in\mathbb{N}}$ converge vers AB.