Chapitre 5

Espaces vectoriels normés

Dans ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et E désigne un \mathbb{K} -espace vectoriel.

I Normes

I. A Normes et espaces vectoriels normés

Définition 1.1

On appelle **norme** sur E une application $N: E \longrightarrow \mathbb{R}$ telle que :

positivité : $\forall x \in E, N(x) \ge 0$;

séparation : $\forall x \in E, N(x) = 0 \Rightarrow x = 0$;

homogénéité : $\forall x \in E, \forall \lambda \in \mathbb{K}, N(\lambda x) = |\lambda| N(x)$;

inégalité triangulaire : $\forall x, y \in E, N(x+y) \leq N(x) + N(y)$.

Un espace vectoriel muni d'une norme est appelé espace vectoriel normé.

Remarques 1.2 : • Si N est une norme sur E, alors $N(0_E) = 0$ (conséquence de l'homogénéité).

• La positivité peut se déduire de l'homogénéité et de l'inégalité triangulaire.

Attention : Lorsque l'on veut montrer qu'une fonction définit une norme sur E, ne pas oublier de montrer qu'elle est bien définie sur E.

Notation : Si E est un espace vectoriel normé et $x \in E$, on notera ||x|| la norme de x plutôt que N(x).

Exemples 1.3: • L'application valeur absolue $x \mapsto |x|$ est une norme sur \mathbb{R} .

- L'application module est une norme sur $\mathbb C$ en tant que $\mathbb R$ -espace vectoriel et en tant que $\mathbb C$ -espace vectoriel.
- Dans \mathbb{R}^2 :

$$\|(x,y)\|_1 = |x| + |y|, \quad \|(x,y)\|_2 = \sqrt{x^2 + y^2} \text{ et } \|(x,y)\|_{\infty} = \max (|x|,|y|)$$

Vocabulaire : Un vecteur x d'un espace vectoriel normé est dit **unitaire** lorsque qa norme est égale à 1.

Proposition 1.4 (seconde inégalité triangulaire)

Soit E un espace vectoriel normé :

définissent des normes.

$$\forall (x,y) \in E^2, ||x|| - ||y|| \le ||x - y||.$$

I. B Normes usuelles

Proposition 1.5

Soit $(E, \langle ., . \rangle)$ un espace préhilbertien réel, $x \mapsto ||x||_2 = \sqrt{\langle x, x \rangle}$ est une norme appelée **norme euclidienne**.

Proposition 1.6

Sur \mathbb{K}^n , pour $x = (x_1, \dots, x_n)$

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2} \text{ et } ||x||_{\infty} = \max_{i \in [1;n]} |x_i|$$

définissent des normes.

Proposition 1.7

Soit X un ensemble non vide et $\mathcal{B}(X,\mathbb{K})$ l'espace des fonctions bornées sur X à valeurs dans \mathbb{K} , alors $N:f\mapsto \sup_{x\in X}|f(x)|$ est une norme sur $\mathcal{B}(X,\mathbb{K})$.

Exemple 1.8 : Le \mathbb{K} -espace vectoriel des suites bornées à valeurs dans \mathbb{K} peut être muni de la norme $N:(u_n)_{n\in\mathbb{N}}\mapsto \sup_{n\in\mathbb{N}}|u_n|$.

(Proposition 1.9)

Soit $(a, b) \in \mathbb{R}^2$ avec a < b,

$$\|f\|_1 = \int_a^b |f(t)| \, dt, \quad \|f\|_2 = \left(\int_a^b |f(t)|^2 \, dt\right)^{\frac{1}{2}} \text{ et } \|f\|_\infty = \max_{x \in [a\,;b]} |f(x)|$$

définissent des normes sur $\mathcal{C}([a;b],\mathbb{K})$.

Vocabulaire : Sur l'espace $C([a;b], \mathbb{K})$:

- $\| \ \|_{\infty}$ est appelée norme de la convergence uniforme;
- $\| \cdot \|_1$ est appelée norme de la convergence en moyenne;
- $\| \ \|_2$ est appelée norme de la convergence en moyenne quadratique.

Remarque 1.10 : Soit $(E, \|\ \|)$ un espace vectoriel normé et F un sous-espace vectoriel de E, alors $(F, \|\ \|)$ est un espace vectoriel normé.

Définition/Proposition 1.11 (EVN produit)

Soit (E_1, \ldots, E_n) une famille de $n \in \mathbb{N}^*$ espaces vectoriels normés munis de normes : (N_1, \ldots, N_n) , alors l'application N définie sur $E = E_1 \times \cdots \times E_n$ par :

$$\forall x = (x_1, \dots, x_n) \in E, \quad N(x) = \max_{i \in [1, n]} N_i(x_i)$$

est une norme sur E appelée **norme produit sur E**. On dit alors que (E, N) est un **espace vectoriel normé produit**.

I. C Distance associée à une norme

Définition 1.12

Soit E un espace vectoriel normé, on appelle **distance** associée à la norme $\|.\|$ de E l'application $d: E^2 \longrightarrow \mathbb{R}$ définie par :

$$(x,y) \mapsto d(x,y) = ||x - y||.$$

Proposition 1.13

Soit E un espace vectoriel normé, la distance associée vérifie :

positivité: $\forall (x,y) \in E^2, d(x,y) \ge 0$;

séparation : $\forall (x,y) \in E^2, d(x,y) = 0 \Rightarrow x = y$;

symétrie: $\forall (x,y) \in E^2, d(x,y) = d(y,x)$;

inégalité triangulaire : $\forall (x, y, z) \in E^3, d(x, y) \leq d(x, z) + d(z, y)$.

(Définition 1.14)

Soit E un espace vectoriel normé, A une partie non vide de E et $x \in E$. On appelle **distance de** x à A:

$$d(x, A) = \inf_{a \in A} d(x, a).$$

I. D Boules

(Définition 1.15)

Soit E un espace vectoriel normé, $a \in E$ et $r \in \mathbb{R}_+^*$. On appelle :

• boule ouverte de centre a et de rayon r :

$$B_o(a,r) = \{x \in E \mid ||x - a|| < r\};$$

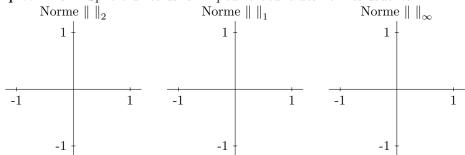
• boule fermée de centre a et de rayon r:

$$B_f(a,r) = \{x \in E \mid ||x - a|| \le r\};$$

• sphère de centre a et de rayon r:

$$S(a,r) = \{x \in E \mid ||x - a|| = r\};$$

Exemples 1.16 : Sphère unité dans \mathbb{R}^2 pour chacune des normes usuelles :



Définition 1.17

Une partie A de E est dite **convexe** lorsque :

$$\forall x, y \in A, \forall t \in [0; 1], (1 - t)x + ty \in A.$$

Remarque 1.18 : Pour $x, y \in E$, l'ensemble $\{(1-t)x + ty; \text{ avec } t \in [0;1]\}$ est le segment [x;y]. Une partie A de E est donc convexe si et seulement si pour tout $x,y \in A$, le segment [x;y] est inclus dans A.

Exemples 1.19:

- Les parties convexes de \mathbb{R} sont
- Dans le plan, un disque est convexe, un cercle n'est pas convexe.
- ullet Tout sous-espace vectoriel de E est convexe.

Proposition 1.20

Dans un espace vectoriel normé, toute boule, ouverte ou fermée, est convexe.

I. E Parties bornées

Définition 1.21

Soit E un espace vectoriel normé,

• une partie A de E est dite **bornée** lorsque :

$$\exists M \in \mathbb{R}^+ \mid \forall x \in A, ||x|| \leqslant M.$$

• une application $f: X \longrightarrow E$ est dite **bornée** lorsque :

$$\exists M \in \mathbb{R}^+ \mid \forall x \in X, ||f(x)|| \leqslant M$$

Remarques 1.22 : • Les boules sont bornées.

• Une application $f: X \longrightarrow E$ est bornée si et seulement si la partie f(X) est bornée.

Attention: Le caractère borné dépend de la norme utilisée.

Exemple 1.23 : On considère dans $\mathbb{K}[X]$ les normes définies pour $P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbb{K}[X]$ par :

$$||P||_1 = \sum_{k=0}^{+\infty} |a_k| \text{ et } ||P||_{\infty} = \max_{k \in \mathbb{N}} |a_k|.$$

On pose pour tout $n \in \mathbb{N}$, $P_n = \sum_{k=0}^n X^k$ et $A = \{P_n; \text{ avec } n \in \mathbb{N}\}$. Alors A est bornée pour la norme $\| \cdot \|_{\infty}$ et non bornée pour la norme $\| \cdot \|_{1}$.

II Suites d'éléments d'un espace vectoriel normé

II. A Suites convergentes

Définition 2.1

Soit E un espace vectoriel normé, $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et $\ell\in E$. On dit que la suite $(x_n)_{n\in\mathbb{N}}$ **converge** vers ℓ (ou tend vers ℓ) lorsque :

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists N \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \geqslant N \Rightarrow ||x_n - \ell|| \leqslant \varepsilon.$$

Vocabulaire : Une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E est dite convergente lorsqu'il existe $\ell \in E$ tel que $(x_n)_{n\in\mathbb{N}}$ converge vers ℓ ; sinon elle est dite divergente.

$ig(ext{Proposition 2.2 (unicité de la limite)} ig)$

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments d'un espace vectoriel normé. Si la suite $(x_n)_{n\in\mathbb{N}}$ converge, alors sa limite est unique.

Vocabulaire: Si $(x_n)_{n\in\mathbb{N}}$ converge vers ℓ , on dit que ℓ est la limite de $(x_n)_{n\in\mathbb{N}}$.

Attention: La notion de limite dépend de la norme choisie!

Exemple 2.3: Soit $E = \mathcal{C}([0;1], \mathbb{R})$ et $\forall n \in \mathbb{N}, f_n : t \mapsto t^n$. Alors dans l'espace vectoriel normé $(E, \| \|_1)$, la suite $(f_n)_{n \in \mathbb{N}}$ tend vers $0_{\mathcal{F}}$, mais pas dans $(E, \| \|_{\infty})$.

Proposition 2.4

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments d'un espace vectoriel normé E et $\ell\in E$, alors :

$$x_n \xrightarrow[n \to +\infty]{} \ell \Leftrightarrow ||x_n - \ell|| \xrightarrow[n \to +\infty]{} 0.$$

Proposition 2.5

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments d'un espace vectoriel normé. Si la suite $(x_n)_{n\in\mathbb{N}}$ converge, alors elle est bornée.

Proposition 2.6 (opérations algébriques)

Soit $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ des suites d'éléments d'un espace vectoriel normé E convergentes vers ℓ et ℓ' , $\lambda \in \mathbb{K}$ et $(\alpha_n)_{n\in\mathbb{N}}$ une suite scalaire convergente vers α . Alors les suites $(x_n+y_n)_{n+y_n\in\mathbb{N}}$, $(\lambda x_n)_{n\in\mathbb{N}}$ et $(\alpha_n x_n)_{n\in\mathbb{N}}$ convergent vers $\ell+\ell'$, $\lambda\ell$ et $\alpha\ell$.

Corollaire 2.7

Si $(x_n)_{n\in\mathbb{N}}$ converge et $(y_n)_{n\in\mathbb{N}}$ diverge, alors $(x_n+y_n)_{n\in\mathbb{N}}$ diverge.

Attention: on ne peut rien conclure si les deux suites divergent.

II. B Suites d'éléments d'un espace produit fini

(Théorème 2.8)

Soit $E = \prod_{i=1}^{p} E_i$ un espace vectoriel normé produit, $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de E avec : $\forall n \in \mathbb{N}, x_n = (x_{n,1}, \dots, x_{n,p})$ et $\ell = (\ell_1, \dots, \ell_p) \in E$. Alors :

$$x_n \xrightarrow[n \to +\infty]{} \ell \Leftrightarrow \forall i \in [[1;p]], x_{n,i} \xrightarrow[n \to +\infty]{} \ell_i.$$

II. C Suites extraites

(Définition 2.9)

Soit $x=(x_n)_{n\in\mathbb{N}}$ une suite d'éléments d'un espace vectoriel normé E. On appelle **suite extraite** de x toute suite de la forme : $(x_{\varphi(n)})_{n\in\mathbb{N}}$ avec $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ strictement croissante.

Remarque 2.10 : Si $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ est strictement croissante, alors :

$$\forall n \in \mathbb{N}, \varphi(n) \geqslant n.$$

(démo par récurrence).

Proposition 2.11

Soit $x = (x_n)_{n \in \mathbb{N}}$ une suite d'éléments d'un espace vectoriel normé E et $\ell \in E$.

- Si x converge vers ℓ , alors toute suite extraite de x converge vers ℓ .
- Si x a deux suites extraites qui convergent vers des limites différentes, alors x diverge.
- Si les suites extraites $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ , alors x converge vers ℓ .

Définition 2.12

Soit $x = (x_n)_{n \in \mathbb{N}}$ une suite d'éléments d'un espace vectoriel normé E et $a \in E$. On dit que a est une **valeur d'adhérence** de la suite x lorsqu'il existe une suite extraite de x qui converge vers a.

Exemple 2.13 : Déterminer les valeurs d'adhérence de $((-1)^n)_{n\in\mathbb{N}}$.

Proposition 2.14

Une suite ayant au moins deux valeurs d'adhérences diverge.

Exemple 2.15: La suite $((-1)^n)_{n\in\mathbb{N}}$ diverge.

Théorème 2.16 (Bolzano-Weierstrass)

Toute suite réelle ou complexe bornée a au moins une valeur d'adhérence.

III Normes équivalentes

(Définition 3.1)

Deux normes N_1 et N_2 sur E sont dites **équivalentes** lorsqu'il existe $\alpha, \beta \in \mathbb{R}_+^*$ tels que :

$$\forall x \in E, \begin{cases} N_1(x) \leqslant \alpha N_2(x) \\ N_2(x) \leqslant \beta N_1(x). \end{cases}$$

Exemple 3.2: Équivalence des normes usuelles sur \mathbb{R}^2 .

Remarques 3.3 : • L'équivalence de normes N_1 et N_2 signifie que la boule centrée en 0 et de rayon 1 pour N_1 est incluse dans la boule de rayon ___ pour N_2 et contient la boule de rayon ___ pour N_2 .

 Nous verrons que sur un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Proposition 3.4

Soit N_1 et N_2 deux normes équivalentes sur E, $(x_n)_{n\in\mathbb{N}}$ d'éléments de E et $\ell\in E$. Alors :

- La suite $(x_n)_{n\in\mathbb{N}}$ est bornée pour la norme N_1 si et seulement si elle est bornée pour la norme N_2 .
- La suite $(x_n)_{n\in\mathbb{N}}$ converge vers ℓ pour la norme N_1 si et seulement si elle converge vers ℓ pour la norme N_2 .

${ m (M\'ethode~3.5)}$

Pour montrer que deux normes ne sont pas équivalents sur E, on peut :

- Trouver une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E qui est bornée pour une norme et non bornée pour l'autre.
- Trouver une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E qui converge pour une norme et pas pour l'autre.

Exemples 3.6: Suite des exemples 1.23 et 2.3.

IV Topologie

IV. A Parties ouvertes

Définition 4.1

Soit E un espace vectoriel normé, $x \in E$ et V une partie de E. On dit que V est un **voisinage** de x lorsque V contient une boule ouverte centrée en x, c'est à dire :

$$\exists r \in \mathbb{R}_+^* \mid \forall y \in E, ||x - y|| < r \implies y \in V.$$

Exemples 4.2 : • Dans $(\mathbb{R}, |.|)$, $[1; +\infty[$ est un voisinage de 2, de 7, mais pas de 1, ni de 0.

• Dans $(E, \|.\|)$, pour tout r > 0, $B_o(x, r)$ est un voisnage de x.

Définition 4.3

Soit E un espace vectoriel normé et U une partie de E. On dit que U est un **ouvert** de E lorsque U est un voisinage de chacun de ses points, c'est à dire :

$$\forall x \in U, \exists r \in \mathbb{R}_+^* \mid \forall y \in E, ||x - y|| < r \Rightarrow y \in U.$$

Exemples 4.4: • L'ensemble vide est un ouvert.

- Toute boule ouverte est un ouvert.
- Dans \mathbb{R} , les intervalles ouverts sont des ouverts.
- Dans $(\mathbb{R}^2, || \parallel_{\infty})$, le demi-plan : $\{(x,y) \in \mathbb{R}^2 \mid x > 0\}$ est ouvert.

Théorème 4.5

- Une réunion quelconque (finie ou infinie) d'ouverts est un ouvert.
- Une intersection finie d'ouverts et un ouvert.

Exemple et contre-exemple : $\bigcup_{n\in\mathbb{N}^*}]\frac{1}{n}\,;1[\,=\,]0\,;1[\,\,\text{et}\,\bigcap_{n\in\mathbb{N}^*}]-\frac{1}{n}\,;\frac{1}{n}[\,=\,\{0\}.$

Proposition 4.6

Un produit fini d'ouverts est un ouvert.

IV. B Parties fermées

Définition 4.7

Soit E un espace vectoriel normé et F une partie de E. On dit que F est fermé lorsque son complémentaire $E \smallsetminus F$ est ouvert.

Exemples 4.8: • Toute boule fermée, toute sphère est fermée.

- Tout singleton $\{a\}$ est fermé.
- Dans \mathbb{R} , les ensembles $[a;b],]-\infty; b], [a;+\infty[$ sont fermés.

Attention: Un ensemble n'est pas soit ouvert soit fermé.

Contre exemple 4.9 : Dans un espace vectoriel normé E, l'ensemble vide et E sont à la fois ouverts et fermés.

Dans \mathbb{R} , l'ensemble [0;1] n'est ni ouvert ni fermé.

Théorème 4.10

- Toute intersection quelconque de fermés est fermée.
- Toute réunion finie de fermés est fermée.

Proposition 4.11

Un produit fini de fermés est un fermé.

IV. C Intérieur, adhérence, frontière

Définition 4.12

• Soit A une partie d'un espace vectoriel normé E. On dit qu'un point x de E est **intérieur** à A lorsque A est un voisinage de x, c'est à dire :

$$\exists r \in \mathbb{R}_+^* \mid \forall y \in E, ||x - y|| < r \implies y \in A.$$

• On appelle intérieur de A, et on note \mathring{A} , l'ensemble des points intérieurs à A.

Exemple 4.13: $\mathring{B}_{f}(a,r) = B_{o}(a,r)$.

Proposition 4.14

Soit A une partie d'un espace vectoriel normé E. L'intérieur de A est le plus grand ouvert de E inclus dans A.

Proposition 4.15

Une partie A d'un espace vectoriel normé est ouverte si et seulement si $A = \mathring{A}$.

(Définition 4.16)

Soit A une partie d'un espace vectoriel normé E et $x \in E$.

• On dit que x est **adhérent** à A lorsque toute boule ouverte de centre x rencontre A, c'est à dire :

$$\forall r \in \mathbb{R}_+^*, B_o(x,r) \cap A \neq \varnothing.$$

• On appelle adhérence de A et on note \overline{A} l'ensemble des points adhérents à A.

Remarque 4.17: Un point est adhérent à A si et seulement si :

$$\forall r > 0, \exists a \in A \mid ||x - a|| < r.$$

Exemples 4.18:

$$\overline{B_o(x,r)} =$$
, $\overline{B_f(x,r)} =$, $\overline{[0;1[} =$

Proposition 4.19

Soit A une partie d'un espace vectoriel normé, alors \overline{A} est le plus petit fermé qui contient A.

Proposition 4.20

Une partie A d'un espace vectoriel normé est fermée si et seulement si $A = \overline{A}$.

$(D\'{e}$ finition 4.21)

Soit A une partie d'un espace vectoriel normé E. On appelle **frontière** de A l'ensemble $\overline{A} \setminus \mathring{A}$.

Remarque 4.22: La frontière d'une partie A est un fermé.

IV. D Caractérisations séquentielles

Théorème 4.23 (caractérisation séquentielle des points adhérents)

Soit A une partie d'un espace vectoriel normé E.

Un point $x \in E$ est adhérent à A si et seulement si il existe une suite $(a_n)_{n \in \mathbb{N}}$ d'éléments de A qui converge vers x.

Théorème 4.24 (caractérisation séquentielle des fermés)

Une partie A d'un espace vectoriel normé est fermée si et seulement si la limite de toute suite convergente (dans E) d'éléments de A est aussi dans A.

Exemple 4.25 : Soit $f:[a;b] \longrightarrow \mathbb{R}$ une fonction continue. Alors le graphe de $f: \mathcal{C}_f = \{(x, f(x)); \text{ avec } x \in [a;b]\}$ est un fermé de $(\mathbb{R}^2, \| \|_{\infty})$.

Définition 4.26

Soit A une partie d'un espace vectoriel normé. Une partie D de A est dite ${\bf dense}$ dans A lorsque $A\subset \overline{D}.$

Remarque 4.27 : D est dense dans A si et seulement si pour tout $x \in A$, il existe une suite d'éléments de D qui converge vers x.

Exemples 4.28: • \mathbb{Q} est dense dans \mathbb{R} .

• L'ensemble des fonctions en escalier de [a;b] dans \mathbb{R} est dense dans $\mathcal{C}_{pm}([a;b],\mathbb{R})$ pour la norme de la convergence uniforme $\|\cdot\|_{\infty}$.

IV. E Topologie et normes équivalentes

$(Th\'{e}or\`{e}me~4.29)$

Soit E un espace vectoriel, N_1 , N_2 deux normes équivalentes sur E et A une partie de E. Alors :

- A est ouvert pour N_1 si et seulement si A est ouvert pour N_2 ;
- A est fermé pour N_1 si et seulement si A est fermé pour N_2 ;
- l'intérieur de A pour N_1 et pour N_2 sont identiques;
- l'adhérence de A pour N_1 et pour N_2 sont identiques;
- la frontière de A pour N_1 et pour N_2 sont identiques.

IV. F Topologie relative

(Définition 4.30)

Soit E un espace vectoriel normé, A une partie de E et $a \in A$. On appelle **voisinage** de a relatif à A toute intersection d'un voisinage de a dans E et de A.

Exemple 4.31 : [0;1] est un voisinage de 0 relativement à $[0;+\infty[$.

(Définition 4.32)

Soit E un espace vectoriel normé, A une partie de E.

Une partie U de A est un **ouvert relatif de** A lorsque U est un voisinage relatif de A de chacun de ses points.

Une partie F de A est un fermé relatif de A lorsque son complémentaire dans A est un ouvert relatif de A.

Exemple 4.33 : [0;1[est un ouvert relatif de $[0;+\infty[$ et]0;1] est un fermé relatif de $]0;+\infty[$.

Proposition 4.34

Soit E un espace vectoriel normé, A une partie de E.

- Une partie U de A est un ouvert relatif de A si et seulement si c'est l'intersection de A et d'un ouvert de E.
- Une partie F de A est un fermé relatif de A si et seulement si c'est l'intersection de A et d'un fermé de E.
- Une partie F de A est un fermé relatif de A si et seulement si la limite de toute suite d'éléments de F qui converge dans A est dans F.