Exerices

Exercice 1. Bolzano-Weierstrass avec vue sur la mer.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle bornée.

Pour tout $n \in \mathbb{N}$, on dit que n a vue sur la mer lorsque :

$$\forall p \geqslant n : u_p \leqslant u_n$$

On note A l'ensembles des entiers qui ont vue sur la mer.

- 1. On suppose dans cette question que A est infini. Montrer qu'il existe une suite extraite de u qui est décroissante.
- 2. On suppose à présent que l'ensemble A est fini. Montrer qu'il existe une suite extraite de u qui est croissante.
- 3. Conclure.

Exercice 2. Soit E un espace vectoriel normé. Montrer que toute sphère S(a,r) est génératrice de E.

Exercice 3. On munit \mathbb{R}^2 de la norme $\|.\|_{\infty}$. Montrer que le carré $]0;1[\times]0;1[$ de \mathbb{R}^2 est ouvert. Même question avec la norme $\|.\|_1$.

Exercice 4. Soit $\ell^{\infty}(\mathbb{K})$ l'ensemble des suites de $\mathbb{K}^{\mathbb{N}}$ bornées et

$$\ell^1(\mathbb{K}) = \left\{ u \in \mathbb{K}^{\mathbb{N}} \mid \sum u_n \text{ converge absolument} \right\}.$$

- 1. Montrer que $N_1(u) = \sum_{n=0}^{+\infty} |u_n|$ définit une norme sur $\ell^1(\mathbb{K})$.
- 2. Montrer que $\ell^1(\mathbb{K}) \subset \ell^{\infty}(\mathbb{K})$ et comparer les normes N_1 et N_{∞} sur $\ell^1(\mathbb{K})$. Ces normes sont-elles équivalentes?

Exercice 5. Soit U un ouvert et A une partie d'un espace vectoriel normé E. Montrer que A+U est ouvert.

Exercice 6. Soit A une partie non vide et majorée de \mathbb{R} et soit $x=\sup(A)$. Montrer que x est adhérent à A.

Exercice 7. Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E qui converge vers $\ell\in E$. Montrer que $\{x_n; \text{ avec } n\in\mathbb{N}\}\cup\{\ell\}$ est un fermé.

Exercice 8. Soit A et B des parties d'un espace vectoriel normé E.

- 1. Montrer que $A \subset B \Rightarrow \overline{A} \subset \overline{B}$ et $\mathring{A} \subset \mathring{B}$.
- 2. Comparer $\overline{A} \cap \overline{B}$ et $\overline{A \cap B}$, $\overline{A} \cup \overline{B}$ et $\overline{A \cup B}$, $\mathring{A} \cap \mathring{B}$ et $\overline{A \cap B}$ et enfin $\mathring{A} \cup \mathring{B}$ et $\overline{A \cup B}$.
- 3. Montrer que $\mathring{A} = A \setminus fr(A)$ et $\overline{A} = A \cup fr(A)$.

Exercice 9. Soit A une partie non vide d'un espace vectoriel normé (E, ||.||). Montrer que :

$$\forall x \in E, \quad x \in \overline{A} \Leftrightarrow d(x, A) = 0.$$

Exercice 10.

- 1. Soit E un espace vectoriel normé et F un sous-espace vectoriel de E. Montrer que, si $\mathring{F} \neq \emptyset$, alors F = E.
- 2. On note E le \mathbb{R} -espace vectoriel $\mathcal{C}([0;1],\mathbb{R})$ muni de la norme $\|.\|_{\infty}$, E_1 (resp. P) la partie de E formée des applications de classe \mathcal{C}^1 (resp. polynomiales). Montrer que : $\mathring{E}_1 = \mathring{P} = \emptyset$.

Banque CCINP

Exercice 11 (CCINP 34). Soit A une partie non vide d'un \mathbb{R} -espace vectoriel normé E.

- 1. Rappeler la définition d'un point adhérent à A, en termes de voisinages ou de boules.
- 2. Démontrer que : $x \in \bar{A} \iff \exists (x_n)_{n \in \mathbb{N}} \text{ telle que, } \forall n \in \mathbb{N}, x_n \in A \text{ et } \lim_{n \to +\infty} x_n = x.$
- 3. Démontrer que, si A est un sous-espace vectoriel de E, alors \bar{A} est un sous-espace vectoriel de E.
- 4. Soient B une autre partie non vide de E. Montrer que $\overline{A \times B} = \overline{A} \times \overline{B}$.

Exercice 12 (CCINP 45).

Les questions 1. et 2. sont indépendantes.

Soit E un $\mathbb{R}\text{-espace}$ vectoriel normé. On note $||\ ||$ la norme sur E.

Soit A une partie non vide de E.

On note \overline{A} l'adhérence de A.

- 1. (a) Donner la caractérisation séquentielle de \overline{A} .
 - (b) Prouver que, si A est convexe, alors \overline{A} est convexe.
- 2. On pose : $\forall x \in E, \ d_A(x) = \inf_{a \in A} ||x a||.$
 - (a) Soit $x \in E$. Prouver que $d_A(x) = 0 \Longrightarrow x \in \overline{A}$.
 - (b) On suppose que A est fermée et que : $\forall (x,y) \in E^2$, $\forall t \in [0,1]$, $d_A(tx+(1-t)y) \leq td_A(x)+(1-t)d_A(y)$. Prouver que A est convexe.