

Un réseau de N fentes espacées de a est éclairé en incidence normale par une onde lumineuse monochromatique de longueur d'onde 0,5 µm.

L'intensité lumineuse observée dans le plan focal image d'une lentille convergente de distance focale 1 m a l'allure suivante :

Déterminer N et a.

$$\delta(M) = (S_i M) - (S_{i+1} M) = (S_i H)$$
 car $(S_{i+1} M) = (HM)$

$$\delta(M) = a \sin \theta \approx \frac{ax}{f'}$$
 car $\tan \theta = \frac{x}{f'} \approx \theta$

Maximum d'intensité pour $\delta(M) = p\lambda$ avec p entier => $x_p = p \frac{\lambda f'}{a}$

Pour p = 1, on mesure
$$x_1 = 2,5.10^{-3}$$
 m. On en déduit : $a = p \frac{\lambda f'}{x_1}$ A.N : $\underline{a = 2.10^{-4}}$ m

$$\mbox{Demi-largeur à la base d'un pic telle que}: \ \Delta \phi = \frac{2\pi}{N} \ \ \, => \ \ \, \frac{2\pi}{\lambda} \frac{a}{f'} \Delta x = \frac{2\pi}{N} \ \ \, => \ \ \, N = \frac{\lambda f'}{a \Delta x}$$

On mesure $\Delta x = 0.35 \cdot 10^{-3}$ m. On en déduit : N = 7