

CHAPITRE TC3: APPLICATIONS DU PREMIER PRINCIPE DE LA THERMODYNAMIQUE (Question de cours et exercices)

- I. TRANSFORMATIONS D'UN SYSTÈME PHYSICO-CHIMIQUE
- II. PREMIER PRINCIPE DE LA THERMODYNAMIQUE, FONCTIONS U ET H
- III. GRANDEURS DE RÉACTION
- IV. EFFET THERMIQUE D'UNE TRANFORMATION CHIMIQUE MONOBARE
- V. DÉTERMINATION DES ENTHALPIES STANDARD DE RÉACTION
- + TP de Calorimétrie

RÉVISIONS PCSI : ATOMISTIQUE : SCHÉMA DE LEWIS, MÉSOMÉRIE, THÉORIE VSEPR, MOMENT DIPOLAIRE (<u>Exercices</u>)

CHAPITRE MQ1: ORBITALES ATOMIQUES (Question de cours et exercices)

- . QUELQUES NOTIONS DE PHYSIQUE QUANTIQUE
 - 1. Dualité onde-corpuscule
 - 2. Notion de fonction d'onde
 - 3. Equation de Schrödinger (Pour information)
- II. CAS DE L'HYDROGÈNE ET DES IONS HYDROGÉNOÏDES
 - 1. Expression des orbitales atomiques (décomposition en parties radiale et angulaire + Nombres quantiques)
 - 2. Energies associées aux fonctions d'onde de l'atome d'hydrogène (formule de E et diagramme)
 - 3. Représentation des orbitales atomiques (OA s et p seulement, la représentation des OA d n'est plus au programme)
 - 4. Extension des résultats aux ions hydrogénoïdes (forme des OA, formule de E et diagramme)
- III. CAS DES ATOMES POLYÉLECTRONIQUES
 - 1. Position du problème
 - 2. Approximation orbitalaire
 - 3. Amélioration de l'approximation : Notion de charge effective
 - 4. OA d'un atome polyélectronique (forme des OA, levée de dégénérescence partielle de E)
 - 5. Configuration électronique (règles de remplissage)
- IV. ARCHITECTURE DU TABLEAU PÉRIODIQUE
 - 1. Principe de construction
 - 2. Périodes
 - 3. Colonnes
 - 4. Blocs
 - 5. Utilisation de la classification périodique
- V. EVOLUTION DE QUELQUES PROPRIÉTÉS DE L'ATOME
 - 1. Charge effective
 - 2. Electronégativité
 - 3. Rayon orbitalaire et rayon atomique

Si tout le reste a été évalué, les notions sur les titrages et diagrammes E-pH restent exigibles, les solutions aqueuses étaient au programme du DS de vendredi 26/09 donc les révisions sont censées être faites... (Attention les complexes ne sont plus au programme de PCSI)

Pas d'exercices sur les piles, qui seront revues dans un prochain chapitre.

Révisions	Compétences exigibles
Chapitre	TC3 : Applications du premier principe de la thermodynamique (Cours et exercices)
	Enoncer le premier principe et l'appliquer aux cas de transformations isochores et monobares.
	Définir l'état standard d'un constituant selon son état physique.
	Définir les notions de grandeur de réaction, d'enthalpie standard de réaction, d'enthalpie standard de formation, d'enthalpie standard de dissociation de liaison et d'enthalpie molaire de changement d'état.
	Prévoir le sens et calculer la valeur du transfert thermique entre un système, siège d'une transformation physico-chimique monobare et monotherme, et le milieu extérieur.
	Déterminer le transfert thermique dû à une transformation chimique monobare et monotherme.
	Evaluer la température atteinte par un système siège d'une transformation physicochimique, monobare et adiabatique.
	Etudier une transformation adiabatique et monobare et déterminer une enthalpie de réaction par calorimétrie.
	Utiliser un cycle thermodynamique ou la loi de Hess pour déterminer une enthalpie de réaction.
Chapitre	MQ1 : Orbitales atomiques
	Définir les termes fonction d'onde, orbitale atomique, densité de probabilité de présence et connaître la décomposition des OA en partie radiale et partie angulaire.
	Exprimer la probabilité de trouver un électron dans un volume élémentaire en faisant intervenir la fonction d'onde.
	Dessiner l'allure des orbitales s et p.
	Etablir la configuration électronique d'un atome ou d'un ion dans son état fondamental, repérer les électrons de cœur et de valence, et le nombre d'électrons non appariés
	Relier la position d'un élément dans le tableau périodique à la configuration électronique de l'atome associé dans son état fondamental.
	Prévoir pour l'atome d'hydrogène et les ions hydrogénoïdes l'évolution du rayon et de l'énergie associés à une fonction d'onde avec le nombre quantique principal n.
	Construire un diagramme d'énergie pour l'hydrogène, les ions hydrogénoïdes et l'atome polyélectronique.
	Déterminer la longueur d'onde d'une radiation émise ou absorbée à partir de la transition énergétique mise en jeu et inversement.
	Savoir manipuler les quatre nombres quantiques.
	Prévoir pour l'atome polyélectronique l'évolution du rayon et de l'énergie en fonction de la charge effective, de l'électronégativité ou de la polarisabilité de l'atome.
Révisions	PCSI : Atomistique
	Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique.
	Citer les éléments des périodes 1 à 3 du tableau périodique (nom, symbole, numéro atomique).
	Proposer une formule de Lewis possible et vraisemblable ainsi que les formes mésomères éventuelles d'une molécule ou un ion.

Déterminer la géométrie d'une molécule à partir de la méthode VSEPR (structures de type AX_pE_q avec $p+q \le 4$) et commenter la valeur des angles entre liaisons, la direction et le sens du moment dipolaire s'il existe.
Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique.
Prévoir la polarisation d'une liaison à partir des électronégativités comparées des deux atomes mis en jeu. Déterminer direction et sens du vecteur moment dipolaire d'une liaison ou d'une molécule.