PC - COLLES DE CHIMIE : SEMAINE 4 DU 06/10 AU 11/10

THERMODYNAMIQUE: 1er principe: révisions

Remarque : Les exercices peuvent porter sur des expériences de calorimétrie à pression constante. (cf TP n°4 : détermination d'une enthalpie standard de réaction)+ exercice traité en classe.

ORBITALES ATOMIQUES

CONTENUS	Capacités exigibles
Fonctions d'onde électroniques ψ de l'atome d'hydrogène.	Interpréter ψ ² comme la densité de probabilité de
Nombres quantiques n, l, ml, ms.	présence d'un électron en un point et la relier à la
Énergie et rayon associés à une fonction d'onde.	densité de charge.
	Prévoir qualitativement, pour l'atome d'hydrogène et
	les ions hydrogénoïdes, l'évolution du rayon et de
	l'énergie associés à une fonction d'onde en fonction du nombre quantique principal.
Orbitales des atomes polyélectroniques, représentation	Dessiner l'allure des orbitales atomiques s et p. Établir
schématique.	la configuration électronique d'un atome ou d'un ion à
Configuration électronique d'un atome et d'un ion	l'état fondamental. Déterminer le nombre d'électrons
monoatomique.	non appariés d'un atome dans son état fondamental.
Électrons de cœur et de valence.	
Notion qualitative de charge effective. Électronégativité.	Relier qualitativement le rayon associé à une orbitale
Rayon d'une orbitale atomique, polarisabilité	atomique à la charge effective. Relier qualitativement
	l'énergie associée à une orbitale atomique à
	l'électronégativité de l'atome. Relier qualitativement le
	rayon associé aux orbitales de valence d'un atome à sa
	polarisabilité.
Architecture du tableau périodique des éléments.	Relier la position d'un élément dans le tableau
Organisation par blocs.	périodique à la configuration électronique de l'atome
	associé dans son état fondamental.
	Situer dans le tableau les familles suivantes : métaux
	alcalins et alcalino-terreux, halogènes et gaz nobles.

Révisions de SUP : schéma de Lewis des molécules.

Structure électronique des molécules

Méthode de Combinaison Linéaire des Orbitales Atomiques.

Description des molécules diatomiques homonucléaires : étude du dihydrogène et du dioxygène (idem pour F2) :

- > principe de construction des orbitales moléculaires par combinaison linéaire d'orbitales atomiques de même symétrie ; notion de recouvrement de deux OA.
- Compétences attendues pour ces trois molécules :
 - Construire des orbitales moléculaires par interaction d'orbitales atomiques du même type (s-s, p- p).
 - énergie d'une orbitale moléculaire : dans le diagramme, savoir placer qualitativement le niveau énergétique de l'OM à partir du niveau énergétique des OA
 - Reconnaître le caractère liant, antiliant, non liant d'une orbitale moléculaire ainsi que la symétrie σ et Π à partir de sa représentation conventionnelle ou d'une surface d'iso-densité.
 - Remplissage électronique d'un diagramme d'orbitales moléculaires.
 - O Calcul de l'indice de liaison (interprétation, Relier dans une molécule diatomique l'évolution de la longueur et de la constante de force de la liaison à l'évolution de l'ordre de liaison)
 - o Identifier la symétrie ou d'une orbitale moléculaire à partir de sa représentation conventionnelle ou d'une surface d'isodensité.

Description des molécules diatomiques de type A-B

- Proposer une représentation conventionnelle d'une orbitale moléculaire en tenant compte d'une éventuelle dissymétrie du système.
- Justifier la dissymétrie d'une orbitale moléculaire obtenue par interaction d'orbitales atomiques centrées sur des atomes d'éléments différents.

Interaction **d'orbitales de fragments** (se limiter à des interactions de 2 orbitales) : Justifier l'existence d'interactions entre orbitales de fragment en termes de recouvrement ou d'écarts d'énergie. Deux molécules traitées H₃ et BeH₂

Titrages redox (si tout a été évalué)