SUITES ET SÉRIES DE FONCTIONS

Cours

Prérequis: Les inégalités classiques suivantes sont à connaître (avec leur preuve):

$$\forall x \in \mathbb{R}, \ e^x - 1 \ge x \qquad \forall x \in]-1, +\infty[, \ \ln(1+x) \le x \qquad \forall x \in \mathbb{R}, \ |\sin x| \le |x|]$$

Notations du chapitre :

- ightharpoonup I désigne un intervalle non vide de $\mathbb R$
- ightharpoonup K désigne $\mathbb R$ ou $\mathbb C$
- ▶ $(f_n)_{n\in\mathbb{N}}$ désigne une suite de fonctions définies sur I à valeurs dans \mathbb{K} c'est-à-dire que pour tout $n \in \mathbb{N}$, f_n est une application de I dans \mathbb{K} .

I. Modes de convergence d'une suite de fonctions

A. Convergence simple

Définition 1

On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I lorsque pour tout $x\in I$, la suite numérique $(f_n(x))_{n\in\mathbb{N}}$ converge.

Dans ce cas, la fonction f définie par :

$$\forall x \in I, \ f(x) = \lim_{n \to +\infty} f_n(x)$$

est appelée la limite simple sur I de la suite $(f_n)_{n \in \mathbb{N}}$.

On dit alors que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f.

Exemple 1: On note $f_n: x \mapsto \frac{x+n}{n(1+4x^2)}$ pour tout $n \in \mathbb{N}^*$.

Étudier la convergence simple sur \mathbb{R} de la suite $(f_n)_{n\in\mathbb{N}^*}$.

Exemple 2: On note $f_n: x \mapsto x^n$ pour tout $n \in \mathbb{N}$.

Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$.

À retenir pour l'étude de la convergence simple sur I: On travaille avec $x \in I$ fixé.

On remarque que la limite simple d'une suite de fonctions continues n'est pas nécessairement continue. Pour conserver la continuité, il faut une notion de convergence plus forte.

B. Convergence uniforme

1. Définition

Par définition, la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers la fonction f lorsque :

 $\forall x \in I, \ \forall \varepsilon > 0, \ \exists N_{x,\varepsilon} \in \mathbb{N} \text{ tel que si } n \in \mathbb{N} \text{ vérifie } n \geq N_{x,\varepsilon} \text{ alors } |f_n(x) - f(x)| \leq \varepsilon.$

Il est important de noter que le rang $N_{x,\varepsilon}$ dépend de x.

Peut-on trouver un rang N_{ε} qui convient pour tous les $x \in I$?

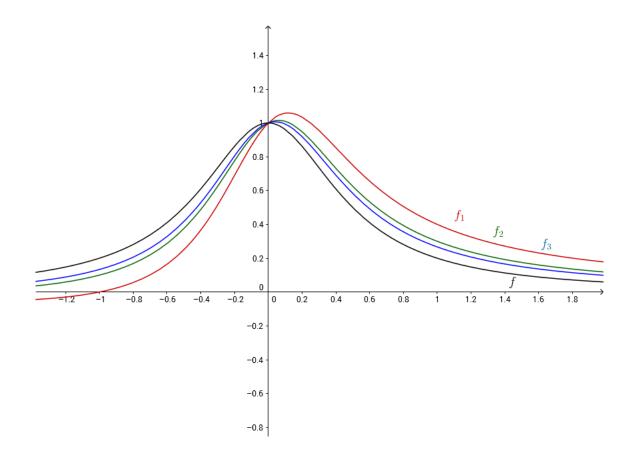
Exemple 1 (suite): On a pour tout $x \in \mathbb{R}$ et pour tout $n \in \mathbb{N}^*$, $|f_n(x) - f(x)| = \frac{|x|}{n(1+4x^2)} \le \frac{1}{n}$.

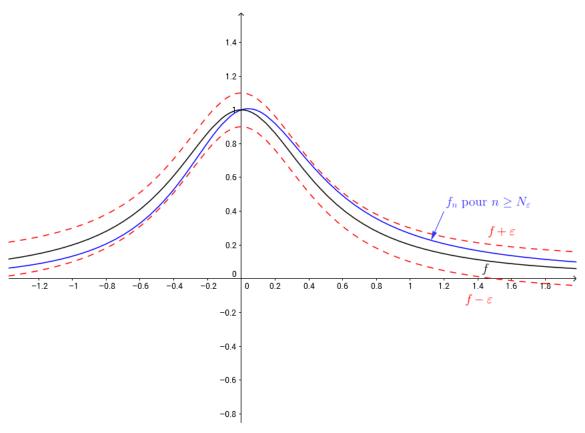
Soit $\varepsilon > 0$. On note $N_{\varepsilon} = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$.

Si $n \in \mathbb{N}$ vérifie $n \ge N_{\varepsilon}$ alors pour tout $x \in \mathbb{R}$, $|f_n(x) - f(x)| \le \varepsilon$.

L'entier N_{ε} convient quelque soit la valeur de x.

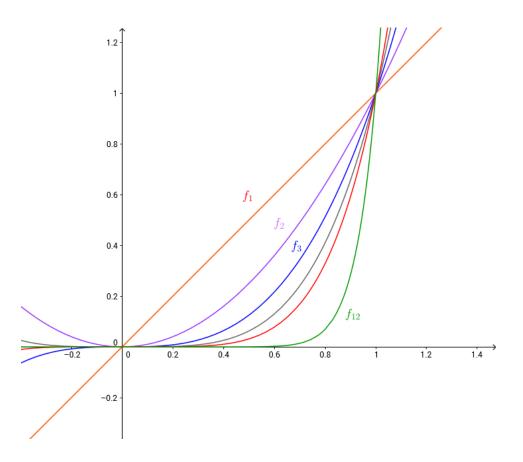
On dit alors que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R} vers la fonction f.





Exemple 2 (suite): Prenons $\varepsilon = \frac{1}{10}$. Pour $x \in]0,1[$, on a $|f_n(x) - f(x)| \le \frac{1}{10}$ si et seulement si $n \ge \frac{-\ln(10)}{\ln x}$.

Comme $\lim_{x\to 1} \frac{-\ln(10)}{\ln x} = +\infty$, on ne pourra pas trouver un rang à partir duquel on aurait pour tout $x \in]0,1[, |f_n(x)-f(x)| \le \frac{1}{10}.$ Ici, la suite $(f_n)_{n \in \mathbb{N}}$ ne converge pas uniformément sur]0,1[vers la fonction f.



Définition 2

On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction f lorsque :

 $\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N} \text{ tel que si } n \in \mathbb{N} \text{ vérifie } n \geqslant N_{\varepsilon} \text{ alors } \forall x \in I, \ |f_n(x) - f(x)| \leqslant \varepsilon.$

- ▶ Pour $\mathbb{K} = \mathbb{R}$, cela signifie que pour tout $\varepsilon > 0$, il est possible de trouver un rang à partir duquel le graphe de la fonction f_n est contenu dans le « tube délimité par les graphes des fonctions $f - \varepsilon$ et $f + \varepsilon$ ».
- Si la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction f alors pour tout intervalle $J \subset I$, la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur J vers la fonction f. En particulier, si la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction f alors elle converge uniformément sur tout segment inclus dans I vers la fonction f. Attention, la réciproque est fausse. L'exemple 2 fournit un contre-exemple.

Exemple 2 (suite):

- 1. Soit $(a,b) \in \mathbb{R}^2$ avec $a \leq b$. Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in [a, b], |f_n(x)| \leq \alpha^n$ où $\alpha = \max(|a|, |b|)$.
- 2. En déduire que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment inclus dans]-1,1[. La suite $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur]-1,1[?

Exemple 3: Soit $m \in \mathbb{N}^*$. Soit I_1, \dots, I_m m intervalles tel que $\bigcup_{k=1}^m I_k = I$.

On suppose que pour tout $k \in [1, m]$, la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur I_k . Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I.

2. Lien entre les deux types de convergence

Proposition 3

Si la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers une fonction f alors elle converge simplement sur I vers la même fonction f.

La réciproque est fausse. L'exemple 2 fournit un contre-exemple : la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur]0,1[mais ne converge pas uniformément sur]0,1[.

4

3. Norme de la convergence uniforme

On note $\mathcal{B}(I,\mathbb{K})$ l'espace vectoriel des applications bornées de I dans \mathbb{K} .

Pour toute fonction $\varphi \in \mathcal{B}(I, \mathbb{K})$, on note $\|\varphi\|_{\infty}^{I} = \sup_{x \in I} |\varphi(x)|$. On rappelle que l'application $\|.\|_{\infty}^{I} : \frac{\mathcal{B}(I, \mathbb{K})}{\varphi} \to \mathbb{R}$ est une norme sur $\mathcal{B}(I, \mathbb{K})$.

Proposition 4

La suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f si et seulement si $\lim_{n\to+\infty} \|f_n - f\|_{\infty}^I = 0$.

- \blacktriangleright Cela suppose que les fonctions f_n f sont bornées à partir d'un certain rang.
- ► Cas particulier où pour tout $n \in \mathbb{N}$, $f_n \in \mathcal{B}(I, \mathbb{K})$ et $f \in \mathcal{B}(I, \mathbb{K})$: La suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur I vers f si et seulement si la suite $(f_n)_{n \in \mathbb{N}}$ converge vers f dans l'espace vectoriel normé $(\mathcal{B}(I, \mathbb{K}), \|.\|_{\infty}^{I})$. C'est pourquoi la norme $\|.\|_{\infty}^{I}$ est appelée norme de la convergence uniforme.

Proposition 5

Si la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f alors pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de I, la suite numérique $(f_n(x_n) - f(x_n))_{n\in\mathbb{N}}$ converge vers 0.

Méthodes pour étudier la convergence uniforme d'une suite de fonctions

- ▶ On commence par étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$ sur I. On suppose que l'on a prouvé que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur I. Notons que si la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I alors c'est nécessairement vers f.
- ► Méthode 1 :

Pour tout $n \in \mathbb{N}$, on calcule $||f_n - f||_{\infty}^I = \sup_{t \in I} |f_n(t) - f(t)|$ (par exemple en réalisant une étude de la fonction $|f_n - f|$ ou de la fonction $f_n - f$ pour en déduire celle de $|f_n - f|$). Il ne reste alors plus qu'à regarder si cette quantité tend vers 0 et on conclut avec la *Proposition 4*.

Exemple 4: On note $f_n: x \mapsto ne^{-n^2x^2}$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur $]0,+\infty[$.
- 2. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur $]0,+\infty[$.
- 3. Soit a > 0. Montrer que la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur $[a, +\infty[$.
- 4. Mêmes questions avec $g_n: x \mapsto x(x ne^{-nx^2})$ pour tout $n \in \mathbb{N}$.
- ► Méthode 2 :

On peut chercher à montrer que $\lim_{n\to +\infty} \|f_n - f\|_{\infty}^I = 0$ en utilisant le théorème de limite par encadrement.

On suppose que pour tout $n \in \mathbb{N}$ et tout $x \in I$, on a :

 $|f_n(x) - f(x)| \le u_n$ où u_n est un réel **ne dépendant pas de** x vérifiant de plus $\lim_{n \to +\infty} u_n = 0$.

Soit $n \in \mathbb{N}$. Le réel u_n est un majorant de l'ensemble $\{|f_n(x) - f(x)|, x \in I\}$. Puisque $||f_n - f||_{\infty}^I$ est le plus petit majorant de cet ensemble, on obtient : $0 \le ||f_n - f||_{\infty}^I \le u_n$. Par le théorème de limite par encadrement, on en déduit que $\lim_{n \to +\infty} ||f_n - f||_{\infty}^I = 0$. Ainsi, la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur I vers f. Exemple 5: On note $f_n: x \mapsto \frac{n + \sin(nx)}{n}$ pour tout $n \in \mathbb{N}^*$. Étudier la convergence uniforme de la suite $(f_n)_{n \in \mathbb{N}^*}$ sur \mathbb{R} .

► Méthode 3 :

Si l'on trouve une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de I telle que la suite $(f_n(x_n) - f(x_n))_{n\in\mathbb{N}}$ ne tend pas 0 alors la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur I vers f par contraposée de la *Proposition* 5.

Exemple 6: On note
$$f_n: x \mapsto \begin{cases} -1 & \text{si } x \leqslant -\frac{1}{n} \\ xn & \text{si } -\frac{1}{n} < x < \frac{1}{n} \text{ pour tout } n \in \mathbb{N}^*. \\ 1 & \text{si } x \geqslant \frac{1}{n} \end{cases}$$

Étudier la convergence simple et uniforme sur \mathbb{R} de la suite $(f_n)_{n\in\mathbb{N}^*}$.

II. Modes de convergence d'une série de fonctions

 $(f_n)_{n\in\mathbb{N}}$ désigne toujours une suite de fonctions définies sur I et à valeurs dans \mathbb{K} .

Définition 6

▶ Pour tout $n \in \mathbb{N}$, on note S_n la fonction somme partielle d'indice n:

$$S_n: X \longrightarrow \mathbb{K}$$

$$\sum_{k=0}^n f_k(x)$$

▶ On appelle série de fonctions de terme général f_n et on note $\sum f_n$ ou $\sum_{n\geq 0} f_n$ la suite de fonctions $(S_n)_{n\in\mathbb{N}}$.

A. Convergence simple

Définition 7

- On dit que la série $\sum f_n$ converge simplement sur I lorsque la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ converge simplement sur I. En d'autres termes, la série $\sum f_n$ converge simplement sur I lorsque pour tout $x \in I$, la série numérique $\sum f_n(x)$ converge.
- ▶ Dans ce cas, la limite simple de la suite $(S_n)_{n\in\mathbb{N}}$ c'est-à-dire la fonction

$$S: \begin{array}{ccc} I & \longrightarrow & \mathbb{K} \\ x & \longmapsto & \sum_{k=0}^{+\infty} f_k(x) \end{array}$$

6

est appelée la fonction somme de la série $\sum_{n\geqslant 0} f_n$ et on note $S=\sum_{n=0}^{+\infty} f_n$.

Définition/Proposition 8

On suppose que la série $\sum f_n$ converge simplement sur I.

▶ Pour tout $n \in \mathbb{N}$, on note R_n la fonction reste d'ordre n:

$$R_n: \underset{x}{\longrightarrow} \underset{k=n+1}{\mathbb{K}}$$

▶ On a pour tout $n \in \mathbb{N}$, $S = S_n + R_n$ et la suite $(R_n)_{n \in \mathbb{N}}$ converge simplement sur I vers la fonction nulle.

Exemple 7: On note $f_n: x \mapsto x^n - x^{n+1}$ pour tout $n \in \mathbb{N}$. Montrer que la série de fonctions $\sum f_n$ converge simplement sur]-1,1]. Déterminer sa somme et son reste d'ordre n pour tout $n \in \mathbb{N}$.

À retenir pour l'étude de la convergence simple sur I: On travaille avec $x \in I$ fixé.

B. Convergence uniforme

Définition 9

On dit que la série $\sum f_n$ converge uniformément sur I lorsque la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ converge uniformément sur I.

Proposition 10

Si la série $\sum f_n$ converge uniformément sur I alors elle converge simplement sur I.

- On dispose alors de la fonction somme S et de la suite de fonctions $(R_n)_{n\in\mathbb{N}}$, suite des restes.
- ▶ La réciproque est fausse. L'exemple 7 fournit un contre-exemple.

Exemple 7 (suite) : Montrer que la série de fonctions $\sum f_n$ ne converge pas uniformément sur]-1,1].

▶ Attention, la convergence uniforme d'une série de fonctions sur tout segment inclus dans un intervalle *I* n'implique pas la converge uniforme sur *I*.

Proposition 11

La série $\sum f_n$ converge uniformément sur I si et seulement si elle converge simplement sur I et la suite des restes $(R_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction nulle.

7

Proposition 12

Si la série $\sum f_n$ converge uniformément sur I alors la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction nulle.

Méthodes pour étudier la convergence uniforme d'une série de fonctions

► Méthode 1 :

On prouve la convergence normale de la série car elle implique la convergence uniforme de la série (cf paragraphe suivant).

► Méthode 2 :

On utilise la *Proposition 11*. On y pensera notamment lorsque pour tout $x \in I$, la série numérique $\sum f_n(x)$ est une série alternée.

Exemple 8 : On note $f_n: x \mapsto \frac{(-1)^n x^n}{n+1}$ pour tout $n \in \mathbb{N}$. Montrer que la série de fonctions $\sum f_n$ converge uniformément sur [0,1].

► Méthode 3 :

Si l'on prouve que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur I vers la fonction nulle alors la série $\sum f_n$ ne converge pas uniformément sur I par contraposée de la *Proposition 12*.

Exemple 9 : On note $f_n: x \mapsto nx^n(1-x)$ pour tout $n \in \mathbb{N}$. Montrer que la série $\sum f_n$ converge simplement mais ne converge pas uniformément sur [0,1].

C. Convergence Normale

Définition 13

On dit que la série $\sum_{n\geqslant 0} f_n$ converge normalement sur I lorsque la série $\sum_{n\geqslant 0} \|f_n\|_{\infty}^I$ converge.

► Cela suppose que les fonctions f_n sont toutes bornées sur I. La série $\sum_{n\geq 0} \|f_n\|_{\infty}^I$ est alors une série numérique.

Exemple 10 : Pour tout $n \in \mathbb{N}$, on note $f_n : x \mapsto x^{n-1}$. Montrer que la série $\sum_{n \geq 1} f_n$ converge normalement sur $\left]0, \frac{1}{2}\right]$ mais pas la série $\sum_{n \geq 0} f_n$.

- ▶ Attention, la notion de convergence normale n'existe pas pour les suites de fonctions.
- \blacktriangleright Attention, la convergence normale d'une série de fonctions sur tout segment inclus dans un intervalle I n'implique pas la converge normale sur I.

8

Proposition 14

Si la série $\sum f_n$ converge normalement sur I alors pour tout $x \in I$, la série $\sum f_n(x)$ converge absolument.

Théorème 15

Si la série $\sum f_n$ converge normalement sur I alors elle converge uniformément sur I.

La réciproque est fausse. L'exemple 8 fournit un contre-exemple.

Exemple 8 (suite): Montrer que la série $\sum_{n=0}^{\infty} f_n$ ne converge pas normalement sur [0,1].

Méthode pour étudier la convergence normale d'une série de fonctions

▶ Méthode 1 :

Pour tout $n \in \mathbb{N}$, on calcule $||f_n||_{\infty}^I$.

Il ne reste alors plus qu'à étudier si la série correspondante converge (cf exemple 10).

$M\'{e}thode\ 2:$

On peut chercher à montrer que la série $\sum_{n\geq 0} \|f_n\|_{\infty}^I$ converge en utilisant une comparaison par inégalité.

On suppose que pour tout $n \in \mathbb{N}$ et tout $x \in I$, on a :

 $|f_n(x)| \le u_n$ où u_n est un réel **ne dépendant pas de** x vérifiant de plus $\sum_{n>0} u_n$ convergente.

Soit $n \in \mathbb{N}$. Le réel u_n est un majorant de l'ensemble $\{|f_n(x)|, x \in I\}$.

Puisque $||f_n||_{\infty}^I$ est le plus petit majorant de cet ensemble, on en déduit :

$$0 \leqslant ||f_n||_{\infty}^I \leqslant u_n.$$

Par comparaison par inégalité, on obtient que la série numérique $\sum_{n\geq 0} \|f_n\|_{\infty}^I$ converge.

Ainsi, la série $\sum_{n=0}^{\infty} f_n$ converge normalement sur I.

Exemple 11 : On note $f_n: x \mapsto \frac{\ln(1+x)}{n^2x}$ pour tout $n \in \mathbb{N}^*$. Montrer que la série $\sum_{n \ge 1} f_n$ converge normalement sur $]0, +\infty[$.

$M\'{e}thode\ 3:$

Si l'on trouve un réel x de I tel que la série $\sum |f_n(x)|$ diverge alors la série $\sum_{n\geq 0} f_n$ ne converge pas normalement sur I par contraposée de la Proposition 14 (cf exemple 8).

Plus généralement, si l'on trouve une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de I telle que la série $\sum |f_n(x_n)|$ diverge alors la série $\sum_{n\geqslant 0} f_n$ ne converge pas normalement sur I.

9

III. RÉGULARITÉ DE LA LIMITE / DE LA SOMME

A. Continuité

Théorème 16

Hyp. On suppose que:

- $\boxed{1}$ pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur I,
- $\boxed{2}$ la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers une fonction f.

Alors f est continue sur I.

Corollaire 17

Hyp. On suppose que :

- $\boxed{1}$ pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur I,
- $\boxed{2}$ la série $\sum f_n$ converge uniformément sur I.

Alors sa somme $S = \sum_{n=0}^{+\infty} f_n$ est une fonction continue sur I.

- Notons qu'une somme finie de fonctions continues sur I est toujours continue sur I.
- ➤ S'il y a seulement convergence simple, la continuité de la limite / de la somme n'est pas assurée (cf exemple 2 et exemple 7).
- ▶ Ces résultats peuvent être utilisés pour prouver qu'il n'y a pas convergence uniforme.
 - * Si une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues converge simplement vers une fonction f qui n'est pas continue alors la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément.
 - * Si une série $\sum f_n$ de fonctions continues converge simplement et que sa somme n'est pas continue alors la série $\sum f_n$ ne converge pas uniformément.
- ▶ [Important] La continuité est une propriété locale.

Soit f une fonction définie sur I.

La fonction f est continue sur I si et seulement si pour tout segment [a, b] inclus dans I, la fonction $f_{|[a,b]}$ est continue sur [a,b].

Point-méthode

On suppose que l'on a établi seulement la convergence uniforme sur tout segment inclus dans I. On applique le *Corollaire 17* sur chaque segment [a,b] inclus dans I et on obtient ainsi la continuité de $S_{[a,b]}$ sur [a,b].

Par le caractère local de la continuité, on peut alors conclure que S est continue sur I.

Exemple 12: Montrer que $S: x \mapsto \sum_{n=0}^{+\infty} \frac{x}{1+n+n^2x^2}$ est bien définie et continue sur $]0, +\infty[$.

- ▶ On peut également établir la continuité sur tous les intervalles du type $[a, +\infty[$ avec a > 0, pour conclure à la continuité sur $]0, +\infty[$, ou choisir d'autres intervalles adaptés à la situation.
- ▶ Lorsque l'intervalle I sur lequel on souhaite prouver la continuité est symétrique par rapport à 0, on peut se limiter aux segments du type [-a, a] avec a > 0, inclus dans I.

B. LIMITES

Sous les hypothèses du Corollaire 17, on a pour tout $a \in I$:

$$\lim_{x \to a} \sum_{n=0}^{+\infty} f_n(x) = \lim_{x \to a} S(x) = S(a) = \sum_{n=0}^{+\infty} f_n(a) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x).$$

Il est donc possible dans ce cas d'intervertir les symboles $\lim_{x\to a}$ et $\sum_{n=0}^{+\infty}$.

Le théorème suivant permet d'obtenir l'interversion $\lim_{x\to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x\to a} f_n(x)$ dans le cas où a est une borne de I (finie ou infinie).

Théorème 18 (Théorème de la double limite)

Hyp. Soit a une borne de I (finie ou infinie). On suppose que :

- 1 pour tout $n \in \mathbb{N}$, la fonction f_n admet une limite finie en a que l'on note ℓ_n ,
- $\boxed{2}$ la série $\sum f_n$ converge uniformément sur I.

Alors la série $\sum \ell_n$ converge, la somme $S = \sum_{n=0}^{+\infty} f_n$ admet une limite finie en a et on a :

$$\lim_{x \to a} S(x) = \sum_{n=0}^{+\infty} \ell_n \quad \text{c'est-à-dire} \quad \lim_{x \to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x)$$

(interversion limite/somme infinie)

Exemple 13: Déterminer l'ensemble de définition de la fonction zêta de Riemann définie par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$. Montrer qu'elle admet une limite en $+\infty$ et la déterminer.

C. Intégration sur un segment

Théorème 19

Hyp. Soit a et b deux réels avec a < b. On suppose que :

- 1 pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur [a,b],
- $\boxed{2}$ la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [a,b].

Alors:

$$\lim_{n \to +\infty} \int_a^b f_n(t) dt = \int_a^b \lim_{n \to +\infty} f_n(t) dt \quad (interversion \ limite/intégrale)$$

Corollaire 20

Hyp. Soit a et b deux réels avec a < b. On suppose que :

- 1 pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur [a,b],
- 2 la série $\sum f_n$ converge uniformément sur [a,b].

Alors la série numérique $\sum \left(\int_a^b f_n(t) dt \right)$ converge et on a :

$$\int_{a}^{b} \left(\sum_{n=0}^{+\infty} f_n(t) \right) dt = \sum_{n=0}^{+\infty} \left(\int_{a}^{b} f_n(t) dt \right)$$

(interversion intégrale/somme infinie ou intégration terme à terme)

▶ Notons que l'interversion d'un symbole intégrale et d'un symbole de somme **finie** est toujours possible par linéarité de l'intégrale.

Soit $N \in \mathbb{N}^*$. Si pour tout $n \in [1, N]$, la fonction f_n est continue sur [a, b] alors :

$$\int_a^b \sum_{n=1}^N f_n(t) dt = \sum_{n=1}^N \int_a^b f_n(t) dt.$$

Exemple 14: Calculer $\lim_{n\to+\infty} \int_{-1}^{1} \sqrt{x^2 + \frac{1}{n}} dx$.

D. CLASSE \mathscr{C}^k

Théorème 21

Hyp. On suppose que :

- $\boxed{1}$ pour tout $n \in \mathbb{N}$, la fonction f_n est de classe \mathscr{C}^1 sur I,
- 2 la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers la fonction f,
- 3 la suite $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction g.

Alors f est de classe \mathscr{C}^1 sur I et f' = g c'est-à-dire :

$$\left(\lim_{n\to+\infty} f_n\right)' = \lim_{n\to+\infty} f'_n \qquad (d\'{e}rivation \ de \ la \ limite)$$

Corollaire 22

Hyp. On suppose que:

- $\boxed{1}$ pour tout $n \in \mathbb{N}$, la fonction f_n est de classe \mathscr{C}^1 sur I,
- $\boxed{2}$ la série $\sum f_n$ converge simplement sur I,
- 3 la série $\sum f'_n$ converge uniformément sur I.

Alors $S = \sum_{n=0}^{+\infty} f_n$ est de classe \mathscr{C}^1 sur I et $S' = \sum_{n=0}^{+\infty} f'_n$ c'est-à-dire : $\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f'_n \qquad (dérivation\ terme\ \grave{a}\ terme)$

- Notons qu'une somme finie de fonctions dérivables/de classe \mathscr{C}^1 sur I est toujours dérivable/de classe \mathscr{C}^1 sur I et on peut dériver terme à terme.
- ▶ Attention! La convergence uniforme doit être vérifiée pour la suite / série des dérivées. Dans l'exemple 14, les fonctions f_n sont de classe \mathscr{C}^1 sur [-1,1], la suite $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [-1,1] vers $f: x \mapsto |x|$ mais f n'est pas de classe \mathscr{C}^1 sur [-1,1].
- ▶ La classe \mathscr{C}^1 est une propriété locale.

Point-méthode

On suppose que l'on a établi seulement la convergence uniforme sur tout segment inclus dans I. On applique le Corollaire 22 sur chaque segment [a,b] inclus dans I et on obtient ainsi la classe \mathscr{C}^1 de $S_{[a,b]}$ sur [a,b].

Par le caractère local de la classe \mathscr{C}^1 , on peut alors conclure que S est de classe \mathscr{C}^1 sur I et on peut dériver terme à terme sur I.

Exemple 13 (suite): Montrer que la fonction ζ est de classe \mathscr{C}^1 sur $]1, +\infty[$.

Théorème 23

Hyp. Soit $k \in \mathbb{N}^*.$ On suppose que :

- $\boxed{1}$ pour tout $n \in \mathbb{N}$, la fonction f_n est de classe \mathscr{C}^k sur I,
- $\boxed{2}$ la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers la fonction f,
- 3 pour tout $j \in [1, k-1]$, la suite $(f_n^{(j)})_{n \in \mathbb{N}}$ converge simplement sur I vers la fonction g_j ,
- $\boxed{4}$ la suite $(f_n^{(k)})_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction g_k .

Alors f est de classe \mathscr{C}^k sur I et pour tout $j \in [\![1,k]\!], \, f^{(j)} = g_j$ c'est-à-dire :

$$\left(\lim_{n\to+\infty}f_n\right)^{(j)}=\lim_{n\to+\infty}f_n^{(j)}$$

Corollaire 24

Hyp. Soit $k \in \mathbb{N}^*$. On suppose que :

- $\boxed{1}$ pour tout $n \in \mathbb{N}$, la fonction f_n est de classe \mathscr{C}^k sur I,
- $\boxed{2}$ la série $\sum f_n$ converge simplement sur I,
- 3 pour tout $j \in [1, k-1]$, la série $\sum f_n^{(j)}$ converge simplement sur I,
- $\boxed{4}$ la série $\sum f_n^{(k)}$ converge uniformément sur I.

Alors $S = \sum_{n=0}^{+\infty} f_n$ est de classe \mathscr{C}^k sur I et pour tout $j \in [1, k]$, $S^{(j)} = \sum_{n=0}^{+\infty} f_n^{(j)}$ c'est-à-dire :

$$\left(\sum_{n=0}^{+\infty} f_n\right)^{(j)} = \sum_{n=0}^{+\infty} f_n^{(j)}$$

Corollaire 25

Hyp. On suppose que:

- $\boxed{1}$ pour tout $n \in \mathbb{N}$, la fonction f_n est de classe \mathscr{C}^{∞} sur I,
- $\boxed{2}$ la série $\sum f_n$ converge simplement sur I,
- $\boxed{3}$ pour tout $j \in \mathbb{N}^*$, la série $\sum f_n^{(j)}$ converge uniformément sur I.

Alors $S = \sum_{n=0}^{+\infty} f_n$ est de classe \mathscr{C}^{∞} sur I et pour tout $j \in \mathbb{N}^*$, $S^{(j)} = \sum_{n=0}^{+\infty} f_n^{(j)}$.

▶ La classe $\mathscr{C}^k/\mathscr{C}^{\infty}$ étant une propriété locale, on pourra penser à appliquer ces résultats sur un segment [a,b] quelconque de I.

Exemple 15 : Montrer que la fonction $S: x \mapsto \sum_{n=2}^{+\infty} \frac{(-1)^n}{n+x}$ est de classe \mathscr{C}^{∞} sur $[-1, +\infty[$. Étudier la monotonie de S sur $[-1, +\infty[$.