SUITES ET SÉRIES DE FONCTIONS

Exercices

- On pose pour tout $n \in \mathbb{N}^*$ et pour tout $x \in]0,1]$, $f_n(x) = nx^n \ln x$ et $f_n(0) = 0$.
 - 1. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers une fonction f à déterminer.
 - 2. Montrer que la convergence n'est pas uniforme sur [0,1].
 - 3. Montrer que la convergence est uniforme sur [0, a] pour tout $a \in]0, 1[$.
- Pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}_+$, on pose $f_n(x) = e^{-nx^n}$.
 - 1. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}_+ vers une fonction f que l'on donnera.
 - 2. Montrer que la convergence n'est pas uniforme sur \mathbb{R}_+ .
 - 3. Montrer que la convergence est uniforme sur $[1, +\infty[$ et sur [0, a] pour tout $a \in]0, 1[$.
- Étudier la convergence simple sur I, uniforme sur I puis uniforme sur tout segment inclus dans I de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$.

1.
$$f_n: x \mapsto \frac{nx^2}{1+nx}$$
, $I = \mathbb{R}_+$

2.
$$f_n: x \mapsto \min\left(n, \frac{x^2}{n}\right), I = \mathbb{R}$$

3.
$$f_n: x \mapsto x^2 \sin\left(\frac{1}{nx}\right), I = \mathbb{R}_+^*$$

4.
$$f_n: x \mapsto \begin{cases} nx & \text{si } 0 \leqslant x \leqslant \frac{1}{n} \\ -nx + 2 & \text{si } \frac{1}{n} < x < \frac{2}{n} \\ 0 & \text{si } \frac{2}{n} \leqslant x \leqslant 1 \end{cases}$$
, $I = [0, 1]$
5. $f_n: x \mapsto \arctan\left(\frac{n+x}{1+nx}\right)$, $I = \mathbb{R}_+^*$

5.
$$f_n: x \mapsto \arctan\left(\frac{n+x}{1+nx}\right), I = \mathbb{R}_+^*$$

- Étudier selon la valeur du paramètre $\alpha \in \mathbb{R}$ la convergence simple et uniforme sur \mathbb{R}_+ de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ où pour tout $n\in\mathbb{N}^*$, $f_n:x\mapsto n^{\alpha}xe^{-nx}$.
- - 1. Étudier la convergence simple sur \mathbb{R} de la suite $(f_n)_{n\in\mathbb{N}}$.
 - 2. Calculer $\lim_{n\to+\infty}\int_0^1 f_n$. La convergence est-elle uniforme?
 - 3. Montrer que pour tout a > 0, la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur la demi-droite $[a, +\infty[$.
- 6 On considère la suite de fonctions $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall x \in \mathbb{R}, \ u_1(x) = \sin x, \ \forall n \geqslant 2, \ u_n(x) = \sin u_{n-1}(x).$$

Montrer que cette suite converge uniformément sur \mathbb{R} .

Soit h une application continue sur $\left]0, \frac{\pi}{2}\right]$ tel que $\lim_{x\to 0} h(x)$ existe dans $\overline{\mathbb{R}}$. Pour $n \in \mathbb{N}$, soit $f_n : x \mapsto h(x)(\cos x)^n$.

- 1. Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$ sur $\left]0,\frac{\pi}{2}\right]$.
- 2. Montrer que la convergence est uniforme sur $\left[a, \frac{\pi}{2}\right]$ pour tout a > 0.
- 3. Cas particulier 1: On suppose dans cette question que $h: x \mapsto \frac{\sin x}{1 \cos x}$. Déterminer $\lim_{x\to 0} h(x)$ et montrer que la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur $\left[0, \frac{\pi}{2}\right]$.
- 4. Cas particulier 2: On suppose dans cette question que $h: x \mapsto x \sin x$. En remarquant que $\lim_{x\to 0} h(x) = 0$, montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur $\left[0, \frac{\pi}{2}\right]$.
- 5. Cas général : Déterminer une condition nécessaire et suffisante sur la fonction h pour que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur $\left]0,\frac{\pi}{2}\right]$.

8 Approximation polynômiale de la racine carrée On définit par récurrence la suite (P_n) de polynômes par :

$$P_0 = 0$$
 et $\forall n \in \mathbb{N}, P_{n+1} = P_n + \frac{1}{2}(X - P_n^2).$

- 1. Montrer que : $\forall n \in \mathbb{N} \text{ et } \forall x \in [0,1], \ 0 \leq P_n(x) \leq \sqrt{x}$.
- 2. Montrer que pour tout $x \in [0,1]$, la suite $(P_n(x))$ est croissante. En déduire que la suite (P_n) converge simplement sur [0,1] vers une fonction à déterminer.
- 3. Montrer que : $\forall n \in \mathbb{N} \text{ et } \forall x \in [0,1] : 0 \leq \sqrt{x} P_n(x) \leq \sqrt{x} \left(1 \frac{\sqrt{x}}{2}\right)^n$.
- 4. On note pour tout $n \in \mathbb{N}$, $g_n : x \mapsto \sqrt{x} \left(1 \frac{\sqrt{x}}{2}\right)^n$.

 Montrer que la suite (g_n) converge uniformément sur [0,1] vers la fonction nulle et en déduire la convergence uniforme sur [0,1] de la suite (P_n) .

9 Convergence uniforme et produit

1. Montrer que si f et g sont deux fonctions bornées définies sur un intervalle I alors :

$$||fg||_{\infty}^{I} \leqslant ||f||_{\infty}^{I} ||g||_{\infty}^{I}.$$

- 2. Soit $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites de fonctions continues sur [a,b] convergeant uniformément sur [a,b] respectivement vers f et g.

 Montrer que $(f_ng_n)_{n\in\mathbb{N}}$ converge uniformément sur [a,b] vers fg.
- 3. Pour $n \in \mathbb{N}^*$, on pose $f_n : x \mapsto \frac{1}{x+n}$ et $g_n : x \mapsto x$. Montrer que les suites de fonctions $(f_n)_{n \in \mathbb{N}^*}$ et $(g_n)_{n \in \mathbb{N}^*}$ convergent uniformément sur $[1, +\infty[$. La suite $(f_n g_n)_{n \in \mathbb{N}^*}$ converge-t-elle uniformément sur $[1, +\infty[$?

10 Limite uniforme de polynômes

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction et $(P_n)_{n \in \mathbb{N}}$ une suite de fonctions polynômiales convergeant uniformément vers f sur \mathbb{R} .

1. Justifier qu'il existe un entier N tel que pour tout $n \ge N$, on ait :

$$\forall x \in \mathbb{R}, |P_n(x) - P_N(x)| \leq 1.$$

- 2. Que dire du polynôme $P_n P_N$?
- 3. En déduire que f est nécessairement un polynôme.
- 11 Pour tout $n \in \mathbb{N}^*$ et pour tout $x \in]0, +\infty[$, on pose $f_n(x) = \frac{1}{xn^2 + 1}$.
 - 1. Montrer que la série $\sum_{n\geq 1} f_n$ converge simplement sur $]0,+\infty[$.
 - 2. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément sur $]0,+\infty[$ vers la fonction nulle. Que peut-on en déduire pour la série $\sum_{n\geq 1} f_n$?
 - 3. Montrer que la série $\sum_{n\geqslant 1} f_n$ converge normalement sur $[a,+\infty[$ pour tout a>0.
- Pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}_+$, on pose $f_n(x) = \frac{(-1)^n}{\sqrt{n+x}}$.
 - 1. Montrer que la série $\sum_{n\geqslant 1} f_n$ converge simplement sur \mathbb{R}_+ .
 - 2. Montrer que la série $\sum_{n\geqslant 1} f_n$ converge uniformément sur \mathbb{R}_+ .
 - 3. La série $\sum_{n\geqslant 1} f_n$ converge-t-elle normalement sur \mathbb{R}_+ ?
- Pour tout $n \in \mathbb{N}$, $n \ge 2$ et pour tout $x \in \mathbb{R}_+$, on pose $f_n(x) = \frac{xe^{-nx}}{\ln n}$.
 - 1. Montrer que la série $\sum_{n\geqslant 2} f_n$ converge simplement sur \mathbb{R}_+ .
 - 2. La série $\sum_{n\geq 2} f_n$ converge-t-elle normalement sur \mathbb{R}_+ ?
 - 3. Montrer que pour tout $n \in \mathbb{N}$, $n \ge 2$ et pour tout $x \in \mathbb{R}_+^*$, on a :

$$0 \leqslant \sum_{k=n+1}^{+\infty} f_k(x) \leqslant \frac{xe^{-x}}{\ln(n+1)(1-e^{-x})}.$$

En déduire que la série $\sum_{n\geq 2} f_n$ converge uniformément sur \mathbb{R}_+ .

Étudier la convergence simple, uniforme et normale sur I de la série de fonction $\sum_{n\geqslant 0} f_n$ dans les cas suivants.

1.
$$f_n: x \mapsto \frac{e^{-nx^2}}{1+n^2}$$
, $I = \mathbb{R}$, 2. $f_n: x \mapsto x^n \ln x$, $I =]0,1]$, 3. $f_n: x \mapsto x^n \ln^2 x$, $I =]0,1]$

Soit pour $n \in \mathbb{N}^*$, $u_n : x \mapsto n^{\alpha} x^n (1-x)$.

Trouver les valeurs du réel α pour lesquelles la série de fonctions $\sum u_n$ est simplement convergente, uniformément convergente, normalement convergente sur [0,1].

- 16 Déterminer $\lim_{n \to +\infty} \int_0^1 x(1+\sqrt{n}e^{-nx}) dx$.
- 17 Montrer que $\int_0^{1/2} \frac{\mathrm{d}x}{1-x} = \sum_{n=1}^{+\infty} \frac{1}{n2^n}$. En déduire la valeur de cette somme.
- 18 Pour tout $n \in \mathbb{N}^*$, on note $f_n : x \mapsto \frac{1}{n^2} \arctan(nx)$.
 - 1. Montrer que la série $\sum_{n\geqslant 1}f_n$ converge simplement sur $\mathbb R.$ On note S sa somme.
 - 2. Montrer que la série $\sum_{n\geqslant 1}f_n$ converge normalement sur \mathbb{R} . En déduire que S est continue sur \mathbb{R} .
 - 3. Montrer que la série $\sum_{n\geq 1} f_n'$ converge normalement sur tout segment inclus dans $]0,+\infty[$. En déduire que S est de classe \mathscr{C}^1 sur \mathbb{R}^* .
 - 4. Montrer que pour tout $N \in \mathbb{N}^*$, $S'\left(\frac{1}{N}\right) \geqslant \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n}$. En déduire que S n'est pas dérivable en 0.
- 19 Pour x > 0, on pose $S(x) = \sum_{n=1}^{+\infty} \frac{1}{n + n^2 x}$.
 - 1. Montrer que S est bien définie et continue sur \mathbb{R}_{+}^{*} .
 - 2. Étudier la monotonie de S.
 - 3. Déterminer la limite de S en $+\infty$ puis un équivalent de S en $+\infty.$
- On pose $f(x) = \sum_{n=1}^{+\infty} e^{-x\sqrt{n}}$.
 - 1. Déterminer le domaine de définition D de f et étudier la continuité de f sur D.
 - 2. Montrer que f est strictement décroissante sur D.
 - 3. Montrer que f est dérivable sur D.
 - 4. Étudier la limite de f en $+\infty$.
 - 5. Déterminer un équivalent simple de f(x) lorsque $x \to 0^+$ (on pourra utiliser une comparaison série-intégrale).
- 1. Justifier la définition de la fonction $f: \begin{cases} 0, \pi[\longrightarrow \mathbb{R} \\ x \longmapsto \sum_{n=1}^{+\infty} \frac{1}{n} \cos^n x \sin(nx) \end{cases}$
 - 2. Montrer que f est de classe \mathscr{C}^1 sur $]0,\pi[$. Calculer f' sous forme d'une somme infinie.
 - 3. Montrer que : $\forall x \in]0, \pi[, f'(x) = -1$. En déduire f sur $]0, \pi[$.
- 22 On pose $F(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^x}$.

Montrer que F est définie et de classe \mathscr{C}^{∞} sur $]0,+\infty[$.