Quelle est la définition d'une norme sur un \mathbb{K} -espace vectoriel E?

Donner la seconde inégalité triangulaire.

Soit u un vecteur non nul. Comment peut-on obtenir un vecteur unitaire à partir de u?

Espaces vectoriels normés

Soit E un sous-ensemble de \mathbb{R} .

Quelle est la définition de max(E)?

Soit $m \in \mathbb{R}$. Donner une caractérisation de $m = \max(E)$.

Un ensemble E admet-il toujours un maximum? Donner deux exemples de situations dans lesquelles $\max(E)$ existe.

Donner une norme utilisant un maximum dans sa définition.

ESPACES VECTORIELS NORMÉS

Soit E un sous-ensemble de \mathbb{R} .

Quelle est la définition de $\sup(E)$?

Soit $m \in \mathbb{R}$. Donner une caractérisation de $m = \sup(E)$.

Un ensemble E admet-il toujours une borne supérieure dans \mathbb{R} ? À quelles conditions en admet-il une?

Donner une norme utilisant une borne supérieure dans sa définition.

ESPACES VECTORIELS NORMÉS

- \star On appelle $norme\ sur\ E$ toute application $\|.\|$ de E dans $\mathbb R$ vérifiant les propriétés suivantes :
 - $\star \ \forall u \in E, \|u\| \geqslant 0$
 - * Séparation : $\forall u \in E, [\|u\| = 0 \Rightarrow u = 0_E]$
 - * $Homog\acute{e}n\acute{e}it\acute{e}: \forall u \in E, \ \forall \lambda \in \mathbb{K}, \ \|\lambda u\| = |\lambda| \|u\|$
 - * Inégalité triangulaire : $\forall (u, v) \in E^2$, $||u + v|| \le ||u|| + ||v||$.

N.B.: Quand on doit montrer qu'une application est une norme, on pensera à vérifier que l'application est bien définie.

* Seconde inégalité triangulaire : On a pour tout $(u, v) \in E^2$:

$$||u| - ||v|| \le ||u - v||.$$

- * Le vecteur $\frac{u}{\|u\|}$ est un vecteur de norme 1.
- \star Le maximum de E, noté $\max(E)$, est le plus grand élément de E. On a l'équivalence :

$$m = \max(E) \iff \begin{cases} \forall x \in E, x \leq m & (m \text{ est un majorant de } E) \\ m \in E & (m \text{ est un élément de } E) \end{cases}$$

- \star Un ensemble E n'a pas toujours de maximum. Par exemple, [0,1[n'a pas de plus grand élément.
- Si E est un ensemble fini non vide alors le réel $\max(E)$ existe.
- Si $E = \{f(t), t \in [a, b]\}$ où f est une fonction continue sur le segment [a, b] (où a et b sont deux réels avec $a \le b$) alors le réel max(E) existe.
- \star Sur \mathbb{K}^n , la norme infinie est définie par :

$$\forall u = (u_1, \dots, u_n) \in \mathbb{K}^n, \ \|u\|_{\infty} = \max_{1 \le i \le n} |u_i|.$$

 \star La borne supérieure de E, noté $\sup(E),$ est le plus petit des majorants de E. On a l'équivalence :

$$m = \sup(E) \Leftrightarrow \begin{cases} \forall x \in E, x \leq m & (m \text{ est un majorant de } E) \\ \text{si } M \text{ est un majorant de } E \text{ alors } m \leq M(\text{c'est le plus petit}) \end{cases}$$

 \star Un ensemble E n'admet pas toujours de borne supérieure dans \mathbb{R} .

Par exemple, $[0, +\infty[$ n'a pas de borne supérieure dans \mathbb{R} .

Si E est un sous-ensemble non vide et majoré de $\mathbb R$ alors il admet une borne supérieure dans $\mathbb R$.

Par convention: Lorsque E est non majoré, on peut poser $\sup(E) = +\infty$.

* Sur $\mathcal{B}(I,\mathbb{K})$ (espace vectoriel des fonctions bornées de I dans \mathbb{K} où I est un intervalle non vide de \mathbb{R}), la norme infinie est définie par :

$$\forall f \in \mathcal{B}(I, \mathbb{K}), \ \|f\|_{\infty}^{I} = \sup_{x \in I} |f(x)|.$$

Soit $(E, \ .\)$ un espace vectoriel normé.
Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et $\ell \in E$.
Comment peut-on étudier si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ ?
Espaces vectoriels normés

\star $\it M\'ethode~1$: On utilise la caractérisation :
$u_n \underset{n \to +\infty}{\longrightarrow} \ell \iff \ u_n - \ell\ \underset{n \to +\infty}{\longrightarrow} 0.$
 Cas 1: On arrive à calculer u_n - ℓ pour tout n ∈ N. Dans ce cas, il ne reste plus qu'à étudier si cette quantité tend vers 0. Cas 2: On arrive à majorer u_n - ℓ par une quantité qui tend vers 0. On peut alors conclure par le théorème des gendarmes que lim_{n→+∞} u_n - ℓ = 0. ★ Méthode 2: Uniquement si E est de dimension finie Par l'équivalence des normes, on peut choisir la norme que l'on veut dans ce cas. On fixe une base B de E.
Alors $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ si et seulement si les suites de coordonnées de $(u_n)_{n\in\mathbb{N}}$ dans la base \mathcal{B} convergent vers les coordonnées correspondantes de ℓ .