Devoir Surveillé n° 2. le 3 octobre.

Exercice: Matrices de rang 1

Dans cet exercice, n désigne un entier naturel supérieur ou égal à 2 et A désigne une matrice de $M_n(\mathbb{R})$ de rang égal à 1.

- **Q1.** On note $C \in M_{n,1}(\mathbb{R})$ la première colonne non nulle de A. Démontrer qu'il existe une matrice ligne $L \in M_{1,n}(\mathbb{R})$ non nulle telle que $A = C \times L$.
- **Q2.** Calculer le réel $L \times C$ et en déduire que $A^2 = \text{Tr}(A)A$.
- $\mathbf{Q3.}$ Déterminer le polynôme caractéristique de A ainsi que son polynôme minimal.
- Q4. Établir que :

A est diagonalisable
$$\Leftrightarrow \operatorname{Tr}(A) \neq 0$$
.

On note désormais u l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

Q5. On suppose que $\operatorname{Im}(u) \cap \operatorname{Ker}(u) \neq \{0_{\mathbb{R}^n}\}.$

Justifier que $\operatorname{Im}(u) \subseteq \operatorname{Ker}(u)$, puis qu'il existe une base de \mathbb{R}^n dans laquelle u est représenté par la matrice :

$$\begin{pmatrix}
0 & 0 & 0 & & & \\
1 & 0 & 0 & & & (0) & \\
0 & 0 & 0 & & & & \\
& & & \ddots & & & \\
& & & & \ddots & & \\
& & & & & 0
\end{pmatrix}$$

Q6. On suppose que $\operatorname{Im}(u) \cap \operatorname{Ker}(u) = \{0_{\mathbb{R}^n}\}.$

Démontrer qu'il existe une base de \mathbb{R}^n dans laquelle u est représenté par la matrice :

où a est un réel non nul.

Q7. Conclure que dans $M_n(\mathbb{R})$ deux matrices de rang 1 sont semblables si et seulement si elles ont la même trace.

PROBLÈME

On note, pour n entier tel que $n \ge 2$, $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients réels. On s'intéresse dans ce problème, à travers divers exemples, à la réduction de matrices par blocs du type $\begin{pmatrix} aA & bA \\ cA & dA \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$ où $A \in \mathcal{M}_n(\mathbb{R})$ et a, b, c, d sont quatre réels non tous nuls.

On rappelle qu'un produit de matrices par blocs se fait de manière similaire à un produit classique : $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$ (chaque matrice bloc étant une matrice de $\mathcal{M}_n(\mathbb{R})$). On pourra utiliser sans démonstration que si $P \in GL_n(\mathbb{R})$, A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$ et si T est un polynôme, $A = P^{-1}BP \Rightarrow T(A) = P^{-1}T(B)P$. On rappelle que si A, B, C sont des matrices de $\mathcal{M}_n(\mathbb{R})$, det $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det A \cdot \det C$.

Questions préliminaires

L'objectif est de démontrer le résultat suivant : "une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable sur \mathbb{R} si et seulement s'il existe un polynôme P scindé sur \mathbb{R} , à racines simples, vérifiant P(M) = 0". Pour cela on considère une matrice $M \in \mathcal{M}_n(\mathbb{R})$ et on note u l'endomorphisme de \mathbb{R}^n canoniquement associé à M.

Q8. On suppose que u est diagonalisable et on note $\lambda_1, \lambda_2, \ldots, \lambda_p (p \ge 1)$ les valeurs propres distinctes de u. Démontrer que le polynôme $P = (X - \lambda_1)(X - \lambda_2) \ldots (X - \lambda_p)$ est annulateur de u.

Q9. Réciproquement, on suppose que $\mu_1, \mu_2, \ldots, \mu_r$ sont r nombres réels distincts $(r \ge 1)$ tels que $Q = (X - \mu_1)(X - \mu_2) \ldots (X - \mu_r)$ est un polynôme annulateur de u. En utilisant le lemme des noyaux, démontrer que u est diagonalisable sur \mathbb{R} et que le spectre de u est inclus dans l'ensemble $\{\mu_1, \mu_2, \ldots, \mu_r\}$.

Un exemple où la matrice $\left(egin{array}{cc} a & b \\ c & d \end{array} \right)$ est diagonalisable sur $\mathbb R$

Q10. On suppose que $V=\begin{pmatrix} 4 & 2 \\ -3 & -1 \end{pmatrix}$. Démontrer que V est diagonalisable sur $\mathbb R$ et donner une matrice inversible que l'on notera $P=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ et une matrice diagonale D vérifiant : $V=PDP^{-1}$ (on précisera P^{-1}).

Q11. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On pose alors la matrice par blocs $Q = \begin{pmatrix} \alpha I_n & \beta I_n \\ \gamma I_n & \delta I_n \end{pmatrix}$. Justifier que la matrice Q est inversible, donner la matrice Q^{-1} et démontrer que la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$ est semblable à la matrice $B = \begin{pmatrix} A & 0 \\ 0 & 2A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$.

Q12. On suppose que la matrice A est diagonalisable sur \mathbb{R} , ce qui signifie qu'il existe une matrice R inversible et une matrice Δ diagonale telles que $A=R\Delta R^{-1}$. Calculer le produit de matrices par blocs : $\begin{pmatrix} R^{-1} & 0 \\ 0 & R^{-1} \end{pmatrix} B \begin{pmatrix} R & 0 \\ 0 & R \end{pmatrix}$.

Que peut-on en déduire pour la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix}$?

Q13. On se propose de démontrer la réciproque du résultat précédent. On suppose que la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix}$ est diagonalisable. Soit T un polynôme scindé à racines simples annulateur de cette matrice, calculer T(A). Donner une condition nécessaire et suffisante sur la matrice A pour que la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix}$ soit diagonalisable.

Un exemple où la matrice $\left(egin{array}{cc} a & b \\ c & d \end{array} \right)$ est trigonalisable sur $\mathbb R$

Q14. Démontrer que la matrice $E = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$ est trigonalisable sur $\mathbb R$ et donner une matrice inversible P telle que $E = P \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} P^{-1}$.

Q15. $A \in \mathcal{M}_n(\mathbb{R})$, démontrer que la matrice $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix}$ est semblable à la matrice $F = \begin{pmatrix} A & -2A \\ 0 & A \end{pmatrix}$.

Q16. On suppose que la matrice F est diagonalisable sur \mathbb{R} . Soit $U \in \mathbb{R}[X]$ un polynôme annulateur de F, scindé sur \mathbb{R} et à racines simples. On note U' le polynôme dérivé de U.

Démontrer que $\begin{pmatrix} U(A) & -2AU'(A) \\ 0 & U(A) \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$ est la matrice nulle.

Q17. Vérifier que le polynôme minimal de la matrice A est X. En déduire la valeur de la matrice A.

Q18. Donner une condition nécessaire et suffisante sur la matrice A pour que la matrice $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix}$ soit diagonalisable.

Q19. On suppose que la matrice F est trigonalisable sur \mathbb{R} . Exprimer le polynôme caractéristique de F en fonction de celui de A. En déduire que F est trigonalisable sur \mathbb{R} si et seulement si A est trigonalisable sur \mathbb{R} .

Q20. Donner un exemple de matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que la matrice $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix} \in \mathcal{M}_4(\mathbb{R})$ ne soit pas trigonalisable sur \mathbb{R} .