

RÉVISIONS PCSI : ATOMISTIQUE : SCHÉMA DE LEWIS, MÉSOMÉRIE, THÉORIE VSEPR, MOMENT DIPOLAIRE (Exercices)

CHAPITRE MQ1: ORBITALES ATOMIQUES (Question de cours et exercices)

- I. QUELQUES NOTIONS DE PHYSIQUE QUANTIQUE
- II. CAS DE L'HYDROGÈNE ET DES IONS HYDROGÉNOÏDES
- III. CAS DES ATOMES POLYÉLECTRONIQUES
- IV. ARCHITECTURE DU TABLEAU PÉRIODIQUE
- V. EVOLUTION DE QUELQUES PROPRIÉTÉS DE L'ATOME

CHAPITRE MQ2 : ORBITALES MOLÉCULAIRES (Question de cours et exercices, les exemples de H₂, A₂) (2eme période), HF et BeH₂ ont été traités en cours mais le TD sera corrigé mercredi)

- I. NOTION D'ORBITALE MOLÉCULAIRE
 - 1. Approximations utilisées (Born-Oppenheimer, orbitalaire, méthode CLOA)
 - 2. Limitation du nombre d'OA
 - 3. Notion de recouvrement entre 2 OA (critère énergétique et critère de symétrie)
- II. PRINCIPE DE CONSTRUCTION DES OM SUR UN EXEMPLE SIMPLE : LES MOLÉCULES DIATOMIQUES HOMONUCLÉAIRES DE LA PREMIÈRE PÉRIODE
 - 1. Description des OM (vocabulaire à connaître : en phase/opposition de phase, OM liante/antiliante, OM symétrique/antisymétrique)
 - 2. Diagramme d'énergie
 - 3. Remplissage des OM
 - 4. Analyse d'un diagramme d'OM (indice de liaison, énergie de stabilisation, propriétés magnétiques)
- III. APPLICATION AUX MOLÉCULES DIATOMIQUES HOMONUCLÉAIRES DE LA DEUXIÈME PÉRIODE
 - 1. Choix des OA et des interactions à considérer
 - 2. Existence de deux types de recouvrement
 - 3. Diagramme non corrélé
 - 4. Diagramme corrélé (sera fourni si besoin)
 - 5. Analyse
- IV. APPLICATION AUX MOLÉCULES DIATOMIQUES HÉTÉRONUCLÉAIRES : EXEMPLE DE HF
 - 1. Données
 - 2. Construction du diagramme d'OM
 - 3. Analyse
- V. APPLICATION AUX MOLÉCULES COMPLEXES: MÉTHODE DES ORBITALES DE FRAGMENTS
 - 1. Principe général
 - 2. Exemple: Etude de l'hydrure de béryllium BeH₂
- VI. POUR ALLER PLUS LOIN: INTERACTION À TROIS ORBITALES (pas fini)

Si tout le reste a été évalué, les notions sur les titrages et diagrammes E-pH restent exigibles, les solutions aqueuses étaient au programme du DS N°1 donc les révisions sont censées être faites... (Attention les complexes ne sont plus au programme de PCSI)

Pas d'exercices sur les piles, qui seront revues dans un prochain chapitre.

Révisions	Compétences exigibles	
Chapitre MQ1 : Orbitales atomiques		
	Définir les termes fonction d'onde, orbitale atomique, densité de probabilité de présence et connaître la décomposition des OA en partie radiale et partie angulaire.	
	Exprimer la probabilité de trouver un électron dans un volume élémentaire en faisant intervenir la fonction d'onde.	
	Dessiner l'allure des orbitales s et p.	
	Etablir la configuration électronique d'un atome ou d'un ion dans son état fondamental, repérer les électrons de cœur et de valence, et le nombre d'électrons non appariés	
	Relier la position d'un élément dans le tableau périodique à la configuration électronique de l'atome associé dans son état fondamental.	
	Prévoir pour l'atome d'hydrogène et les ions hydrogénoïdes l'évolution du rayon et de l'énergie associés à une fonction d'onde avec le nombre quantique principal n.	
	Construire un diagramme d'énergie pour l'hydrogène, les ions hydrogénoïdes et l'atome polyélectronique.	
	Déterminer la longueur d'onde d'une radiation émise ou absorbée à partir de la transition énergétique mise en jeu et inversement.	
	Savoir manipuler les quatre nombres quantiques.	
	Prévoir pour l'atome polyélectronique l'évolution du rayon et de l'énergie en fonction de la charge effective, de l'électronégativité ou de la polarisabilité de l'atome.	
Chapitre	MQ2 : Orbitales moléculaires	
	Connaître l'approximation de Born-Oppenheimer, l'approximation orbitalaire et le principe de la méthode CLAO.	
	Connaître les conditions d'interaction de deux orbitales (critère énergétique et recouvrement).	
	Définir les notions d'orbitale moléculaire, recouvrement liant et antiliant, orbitales σ et π .	
	Construire et représenter de manière conventionnelle les OM issues de l'interaction de deux OA sur deux centres et dresser le diagramme d'interaction.	
	Reconnaître le caractère liant, antiliant, σ ou π d'une orbitale.	
	Etablir le diagramme d'OM non corrélé d'une molécule diatomique homonucléaire de la première ou de la deuxième période et en déduire sa configuration électronique.	
	Commenter le diagramme d'OM de molécules diatomiques (indice de liaison, propriétés magnétiques).	
	Interpréter un diagramme d'orbitales moléculaires obtenus par interaction des orbitales de deux fragments.	
Révisions	s PCSI : Atomistique	
	Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique.	
	Citer les éléments des périodes 1 à 3 du tableau périodique (nom, symbole, numéro atomique).	
	Proposer une formule de Lewis possible et vraisemblable ainsi que les formes mésomères éventuelles d'une molécule ou un ion.	
	Déterminer la géométrie d'une molécule à partir de la méthode VSEPR (structures de type AX_pE_q avec $p+q \le 4$) et commenter la valeur des angles entre liaisons, la direction et le sens du moment	
_		

dipolaire s'il existe.
Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique.
Prévoir la polarisation d'une liaison à partir des électronégativités comparées des deux atomes mis en jeu. Déterminer direction et sens du vecteur moment dipolaire d'une liaison ou d'une molécule.