DEVOIR SURVEILLÉ 2

10/10/25

Durée 4h

EXERCICE 1: DIAGONALISATION À L'AIDE D'UN POLYNÔME ANNULATEUR

Soient E un \mathbb{R} -espace vectoriel de dimension $n \ge 1$ et u un endomorphisme de E. On suppose que le polynôme $P = X^2 - 3X + 2$ est un polynôme annulateur de u.

- 1. On pose $v = u id_E$ et $w = u 2id_E$.
 - **1.a.** Déterminer l'endomorphisme v-w et en déduire que $E = \operatorname{Im}(v) + \operatorname{Im}(w)$.
 - **1.b.** Préciser $v \circ w$ et $w \circ v$.
 - **1.c.** Prouver que $\operatorname{Im}(w) \subset \operatorname{Ker}(v)$ et que $\operatorname{Im}(v) \subset \operatorname{Ker}(w)$.
 - **1.d.** Démontrer que $E = \text{Ker}(v) \oplus \text{Ker}(w)$.
 - **1.e.** Montrer que les sous-espaces vectoriels Ker(v) et Ker(w) sont stables par u.
- 2. Comment peut-on déterminer une base de E dans laquelle la matrice de u est diagonale?
- 3. On note r la dimension de Ker(w). Déterminer la trace de u et le déterminant de u en fonction de r.

4. Application

Dans cette question, E est de dimension 3. On munit E de la base $\mathcal{B} = (e_1, e_2, e_3)$ et, dans cette base, on définit l'endomorphisme u par sa matrice $U = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -1 & 1 & 2 \end{pmatrix}$.

- **4.a.** Vérifier que le polynôme P défini ci-dessus est un polynôme annulateur de u. On fera apparaître les calculs sur la copie.
- **4.b.** Déterminer les matrices V et W des endomorphismes v et w définis à la question 1.
- **4.c.** Déterminer une base de Ker(V) et une base de Ker(W). En déduire une base de Ker(v) et une base de Ker(w).
- **4.d.** Déterminer une matrice diagonale D et une matrice inversible Q telles que $U = QDQ^{-1}$.

EXERCICE 2 : DÉTERMINANT DE VANDERMONDE

Pour n entier, $n \ge 2$, on définit le déterminant de Vandermonde de n nombres complexes x_1, x_2, \ldots, x_n par :

$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix}.$$

L'objet de cet exercice est de démontrer par récurrence que l'on a : $V(x_1, x_2, ..., x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$. L'objectif de cet exercice est de proposer une autre méthode de démonstration que celle vue en cours.

1. Expliquer pourquoi il suffit de faire la démonstration pour n nombres complexes x_1, x_2, \ldots, x_n deux à deux distincts.

Dans la suite, x_1, x_2, \ldots, x_n sont n nombres complexes deux à deux distincts.

- **2.** Calculer $V(x_1, x_2)$.
- **3.** On considère la fonction $P: t \mapsto V(x_1, x_2, \dots, x_{n-1}, t)$.
 - **3.a.** Démontrer que P est une fonction polynômiale de degré au plus n-1.
 - **3.b.** Justifier que le cœfficient de t^{n-1} est un déterminant de Vandermonde.
 - **3.c.** Déterminer n-1 racines distinctes de P et en déduire une factorisation du polynôme P.
- **4.** En déduire par récurrence que $V(x_1, x_2, ..., x_n) = \prod_{1 \le i < j \le n} (x_j x_i)$.

5. Application

Soit n nombres complexes x_1, x_2, \ldots, x_n deux à deux distincts et tous non nuls.

5.b. Démontrer que l'une au moins des sommes $\sum_{k=1}^n x_k, \sum_{k=1}^n x_k^2, \sum_{k=1}^n x_k^3, \dots, \sum_{k=1}^n x_k^n$ est non nulle.

2

Exercice 3 : Polynômes interpolateurs de Lagrange

On note $\mathscr{C} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$.

On pose $a_0 = -1$, $a_1 = 1$ et $a_2 = -2$ et on note $\mathcal{B} = (L_0, L_1, L_2)$ la base des polynômes d'interpolation de Lagrange associés aux réels a_0 , a_1 et a_2 .

- 1. Soit $P \in \mathbb{R}_2[X]$. Rappeler (sans preuve) l'expression des coordonnées de P dans la base \mathscr{B} .
- 2. Déterminer la matrice de passage de la base \mathscr{B} à la base \mathscr{C} . On la note A.
- **3.** Donner l'expression de L_0 , L_1 et L_2 .
- **4.** Justifier que A est inversible et déterminer A^{-1} .

Problème: Pseudo-inverse et matrice stochastique

Dans tout ce problème, n désigne un entier naturel non nul.

Partie I : Préliminaires

A. Matrices stochastiques

On note J le vecteur-colonne de $\mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients valent 1.

Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite stochastique lorsque tous ses cœfficients sont positifs et qu'elle vérifie MJ = J.

I.A.1. Soit M et N deux matrices de $\mathcal{M}_n(\mathbb{R})$.

Montrer que si M et N sont stochastiques alors MN est stochastique.

I.A.2. Soit M une matrice stochastique de $\mathcal{M}_n(\mathbb{R})$.

Montrer que pour tout $k \in \mathbb{N}$, M^k est stochastique.

I.A.3. Soit $(M_k)_{k\in\mathbb{N}}$ une suite de matrices stochastiques de $\mathscr{M}_n(\mathbb{R})$.

On suppose que la suite $(M_k)_{k\in\mathbb{N}}$ converge vers la matrice M.

Montrer que la matrice M est stochastique.

B. Une norme sous-multiplicative

Pour toute matrice $M = (m_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$, on pose :

$$||M|| = \max_{1 \le i \le n} \sum_{j=1}^{n} |m_{i,j}|.$$

I.B.1. Montrer que $\|.\|$ est une norme sur $\mathcal{M}_n(\mathbb{R})$.

- **I.B.2.** Montrer que pour toutes matrices M et N de $\mathcal{M}_n(\mathbb{R})$, $||MN|| \leq ||M|| ||N||$.
- **I.B.3.** Montrer que si M est une matrice stochastique alors ||M|| = 1.

PARTIE II : PSEUDO-INVERSE D'UNE MATRICE

Définition

Soit $A \in \mathcal{M}_n(\mathbb{R})$, une matrice $A' \in \mathcal{M}_n(\mathbb{R})$ est un pseudo-inverse de A lorsque les trois propriétés suivantes sont satisfaites:

$$AA' = A'A \tag{1}$$

$$A = AA'A \tag{2}$$

$$A' = A'AA' \tag{3}$$

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ et φ l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associé à A c'està-dire défini par : $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \varphi(X) = AX$.

II.1. Montrer que l'existence d'un pseudo-inverse de A implique que

$$\operatorname{Im}(\varphi) = \operatorname{Im}(\varphi^2)$$

et en déduire que $rg(\varphi) = rg(\varphi^2)$.

Inversement, on suppose maintenant que $rg(\varphi) = rg(\varphi^2)$. On note r cet entier.

II.2. Montrer que l'image et le noyau de φ sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{R})$:

$$\mathcal{M}_{n,1}(\mathbb{R}) = \operatorname{Im}(\varphi) \oplus \operatorname{Ker}(\varphi).$$

II.3. Montrer qu'il existe $B \in \mathcal{M}_r(\mathbb{R})$, B inversible et $P \in \mathcal{M}_n(\mathbb{R})$, P inversible, telles que

$$A = P \begin{pmatrix} B & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} P^{-1}.$$

II.4. Montrer que $P\begin{pmatrix} B^{-1} & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} P^{-1}$ est un pseudo-inverse de A.

On souhaite désormais prouver l'unicité du pseudo-inverse de A.

Considérons un pseudo-inverse quelconque A' de A et φ' l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associé à A'.

II.5. Montrer que $\operatorname{Ker}(\varphi)$ et $\operatorname{Im}(\varphi)$ sont stables par φ' et qu'il existe $C \in \mathscr{M}_r(\mathbb{R})$ telle que

$$A' = P \begin{pmatrix} C & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} P^{-1}.$$

- II.6. Montrer que $\varphi \circ \varphi'$ est un projecteur dont on précisera le noyau et l'image en fonction de ceux de φ et préciser ce que vaut $P^{-1}(AA')P$.
- II.7. En déduire l'unicité du pseudo-inverse de A.

PARTIE III: LIMITE D'UNE SUITE MATRICIELLE

Dans toute cette partie, M désigne une matrice stochastique de $\mathcal{M}_n(\mathbb{R})$ dont tous les cœfficients sont strictement positifs.

On pose $A = I_n - M$ et on note φ l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associé à A.

On admet que $rg(\varphi) = rg(\varphi^2)$. La partie II garantit ainsi l'existence et l'unicité du pseudo-inverse de A, qui est donné par :

 $A' = P \begin{pmatrix} B^{-1} & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} P^{-1}$

où $B \in GL_r(\mathbb{R})$ et $P \in GL_n(\mathbb{R})$ sont les matrices définies à la question II.3.

III.1. Soit D une matrice inversible de $\mathcal{M}_r(\mathbb{R})$. Établir pour tout entier k supérieur ou égal à 1 l'égalité :

$$\sum_{j=0}^{k-1} ((I_r - D)^j - (I_r - D)^{j+1}) = I_r - (I_r - D)^k$$

puis en déduire que :

$$\sum_{j=0}^{k-1} (I_r - D)^j = (I_r - (I_r - D)^k)D^{-1}.$$

III.2. Établir pour tout entier k supérieur ou égal à 1 l'identité suivante :

$$\sum_{j=0}^{k-1} M^j = (I_n - M^k)A' + k(I_n - AA').$$

III.3. Montrer que pour tout entier k supérieur ou égal à 1, on a $||(I_n - M^k)A'|| \le 2||A'||$, où ||.|| est la norme définie dans la partie I.B.

En déduire que $\lim_{k\to+\infty}\frac{1}{k}\sum_{j=0}^{k-1}M^j$ existe et donner sa valeur.

III.4. Montrer que $I_n - AA'$ est stochastique.