Structure des entités chimiques organiques Isomérie de constitution.	
Stéréoisomérie de conformation en série aliphatique non cyclique ; ordre de grandeur de la barrière conformationnelle. Représentation de Newman. Représentation topologique.	Comparer la stabilité de plusieurs conformations. Interpréter la stabilité d'un conformère donné.
Stéréoisomérie de configuration : chiralité, énantiomérie, diastéréoisomérie descripteurs stéréochimiques R, S, Z, E.	Attribuer les descripteurs stéréochimiques aux centres stéréogènes. Déterminer la relation d'isomérie entre deux isomères. Représenter une entité chimique organique à partir de son nom, fourni en nomenclature systématique, en tenant compte de la donnée d'éventuelles informations stéréochimiques, en utilisant un type de représentation donné.

Activité optique, pouvoir rotatoire, loi de Biot.				Relier la valeur du pouvoir rotatoire à la composition d'un mélange de stéréoisomères.	
				Déterminer la composition d'un système chimique ou suivre une transformation chimique en utilisant l'activité optique.	
Séparation d'énantiomères.	de	diastéroisomères	et	Citer des analogies et différences de propriétés entre des diastéréoisomères et des énantiomères. Reconnaitre des protocoles de séparation de stéréoisomères.	

Notions et contenus	Capacités exigibles
Modèle de Lewis de la liaison covalente Liaison covalente localisée; longueur et énergie de la liaison covalente. Schéma de Lewis d'une molécule ou d'un ion monoatomique ou polyatomique (étude limitée aux éléments des blocs s et p).	Citer l'ordre de grandeur de longueurs et d'énergies de liaison covalente. Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Citer les éléments des périodes 1 à 3 du tableau périodique (nom, symbole, numéro atomique). Établir un ou des schémas de Lewis pertinent(s) pour une molécule ou un ion.
Liaison covalente délocalisée : mésomérie.	Identifier et représenter les enchaînements donnant lieu à une délocalisation électronique. Mettre en évidence une éventuelle délocalisation électronique à partir de données expérimentales.
Géométrie et polarité des entités chimiques Structure géométrique d'une molécule ou d'un ion polyatomique. Modèle VSEPR. Représentation de Cram.	Associer qualitativement la géométrie d'une entité à la minimisation de son énergie. Prévoir et interpréter les structures de type AX_n avec $n \le 4$ et AX_pE_q , avec $p+q=3$ ou 4.
Électronégativité : liaison polarisée, moment dipolaire, molécule polaire.	Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique. Prévoir la polarisation d'une liaison à partir des électronégativités comparées des deux atomes mis en jeu. Relier l'existence ou non d'un moment dipolaire permanent à la structure géométrique d'une molécule. Déterminer direction et sens du vecteur moment dipolaire d'une liaison ou d'une molécule.