Corrigé du DM facultatif

Exemple d'idéal d'un anneau de suites

Polynômes de Hurwitz

1) Soit α un racine réelle du polynôme $P \in \mathbb{R}[X]$ à coefficients strictement positifs. Alors en posant d le degré de P, il existe d+1 réels $a_k > 0$ (k dans [0;d]) avec $P = \sum_{k=0}^{d} a_k X^k.$

Si $\alpha \ge 0$, alors pour tout k dans [1; d], par produit de réels positifs, $a_k \alpha^k \ge 0$, et donc $P(\alpha) \geqslant a_0 > 0$. Dans ce cas, $P(\alpha) \neq 0$ ce qui est incompatible avec α racine de P. Par disjonction de cas, on a donc $\alpha < 0$

- 2) Soit P un polynôme de Hurwitz et R un diviseur de P. Toute racine complexe de R est donc une racine de P (qui est un multiple de R). Or les racines de P sont dans Re^- car P est un polynôme de Hurwitz, donc toute racine complexe de R est dans Re^- ce qui montre que R est un polynôme de Hurwitz
- 3) Soit $P \in \mathbb{R}[X]$ un polynôme de Hurwitz irréductible dans $\mathbb{R}[X]$ à coefficient dominant positif.

Comme P est un polynôme irréductible de $\mathbb{R}[X]$, il est soit de degré 1 soit de degré 2 à discriminant strictement négatif.

* cas deg(P) = 1 : il existe $(a;b) \in \mathbb{R}^2$ avec P = aX + b.

Par hypothèse sur le coefficient dominant a>0 (positif et non nul) donc la racine -b/a de P est dans Re⁻ car P est un polynôme de Hurwitz. Donc a>0 et -b/a<0d'où b > 0.

* cas deg(P) = 2 : il existe $(a;b;c) \in \mathbb{R}^3$ avec $P = aX^2 + bX + c$.

Par hypothèse sur le coefficient dominant, on sait a > 0 (positif et non nul); l'irréductibilité de P assure aussi $b^2 - 4ac < 0$, donc P admet deux racines complexes (non réelles) conjuguées z et \bar{z} avec $z \in \text{Re}^-$ (car P de Hurwitz). Ainsi par le lien coefficients racines, on trouve: $b = -a(z+\bar{z}) = -2a\text{Re}(z) < 0$ et $c = a|z|^2 > 0$ car |z| > 0 puisque $z \neq 0$ car non réel.

- * Ainsi dans tous les cas, on a prouvé que P est à coefficients strictement positifs.
- 4) On suppose n=2 et Q à coefficients strictement positifs.
- * cas où P est à racines réelles.

Alors les complexes z_1 et z_2 sont en fait réels (racines de P) donc via Q1, les racines réelles $2z_1$ et $2z_2$ de Q vérifient $2z_1 < 0$ et $2z_2 < 0$ donc $z_1 < 0$ et $z_2 < 0$ ce qui prouve que P est un polynôme de Hurwitz dans ce cas.

* cas où P admet des racines non réelles.

Comme P est de degré à coefficients réels, P admet deux racines complexes non réelles conjuguées z et \bar{z} .

Alors
$$Q = (X - 2z)(X - 2\bar{z})(X - z - \bar{z})^2 = (X - 2z)(X - 2\bar{z})(X - 2\operatorname{Re}(z))^2$$

Donc comme Q est à coefficients strictement positifs, sa racine réelle 2Re(z) est strictement négative (cf Q1). Donc Re(z) < 0 et $Re(\bar{z}) = Re(z) < 0$, ce qui signifie que les racines de P sont dans Re⁺ donc que P est un polynôme de Hurwitz.

- * Dans tous les cas, P est un polynôme de Hurwitz
- 5) Comme A et B sont des polynômes à coefficients strictement positifs, on peut écrire à l'aide de leurs degrés respectifs α et β :

$$\exists (a_k)_{k \in \llbracket 0; \alpha \rrbracket} \in (\mathbb{R}_+^*)^{\alpha+1}, \quad \exists (a_k)_{k \in \llbracket 0; \beta \rrbracket} \in (\mathbb{R}_+^*)^{\beta+1}, \quad \text{avec } A = \sum_{k=0}^{\alpha} a_k X^k \text{ et } B = \sum_{k=0}^{\beta} b_k X^k$$

alors en posant : $\forall k \in [0; \alpha + \beta]$ $c_k = \sum_{\ell=m}^{M_k} a_\ell, b_{k-\ell}$ où $m_k = \max(0; k - \beta) \in \mathbb{N}$ et

 $M_k = \max(k; \alpha)$

on a
$$AB = \sum_{k=0}^{\alpha+\beta} c_k X^k$$
.

Par somme de produit de réels strictement positifs, on a $c_k > 0$ pour tout $k \in [0; \alpha + \beta]$ Ainsi AB est à coefficients strictement positifs.

6) • Supposons que P est un polynôme de Hurwitz.

Alors ses racines z_k (pour tout $k \in [1; n]$) sont dans Re⁻ i.e. $(z_k) < 0$. Les racines de Qsont les $z_k + z_\ell$ avec $(k : \ell) \in [1; n]^2$, et on a toujours $\operatorname{Re}(z_k + z_\ell) = \operatorname{Re}(z_k) + \operatorname{Re}(z_\ell) < 0$ donc Q est aussi de Hurwitz.

Montrons qu'un polynôme (de $\mathbb{R}[X]$) de Hurwitz unitaire est à coefficients strictement positifs ce qui prouvera ici que P et Q sont à coefficients strictement positifs.

Soit donc R un polynôme (de $\overline{\mathbb{R}[X]}$) de Hurwitz unitaire. On l'écrit comme produit de polynômes irréductibles unitaire de $\mathbb{R}[X]$:

$$R = \prod_{\ell=1}^d R_\ell \text{ avec } d \in \mathbb{N}^* \text{ et } R_\ell \text{ irréductible unitaire de } \mathbb{R}[X] \text{ pour tout } \ell \in [1;d].$$

Pour tout $\ell \in [1; d]$, comme R_{ℓ} divise le polynôme de Hurwitz, R_{ℓ} est aussi de Hurwitz (via Q2) donc via Q3, est à coefficients strictement positifs. Par produit (récurrence et Q5), le polynôme R est donc bien à coefficients strictement positifs.

• Supposons P et Q à coefficient strictement positifs.

Soit z une racine complexe de P. Alors

- si z est un réel, la question Q1 prouve z < 0 donc $z \in \text{Re}^-$,
- sinon z est un complexe non réel, racine de $P \in \mathbb{R}[X]$ donc \bar{z} est aussi racine de P et $z \neq \bar{z}$ (z non réel). Ainsi par définition de $Q, z + \bar{z} = 2\text{Re}(z)$ est racine réelle de Q. Via Q1, comme Q est à coefficients strictement positifs, 2Re(z) < 0 i.e. Re(z) < 0 ou encore $z \in \text{Re}^-$,

Ainsi P est un polynôme de Hurwitz

Par double implication, on a bien prouvé

 $P\in\mathbb{R}[X]$ est un polynôme de Hurwitz si et seulement si P et Q sont à coefficients strictement positifs

(en fait la condition sur Q suffit).