Devoir Maison n° 3. Pour le 22 septembre.

Exercice 14

Soit

$$A = \begin{pmatrix} 3 & 1 & -2 \\ 3 & 5 & -6 \\ 1 & 1 & 0 \end{pmatrix}.$$

- 1. Déterminer le polynôme minimal de A. Indication : On cherchera un polynôme annulateur de degré 2.
- **2.** En déduire que A est inversible et calculer son inverse.
- **3.** Exprimer A^k en fonction de A et I_3 pour tout $k \in \mathbb{N}$.

Exercice 20 (CCINP 90)

 \mathbb{K} désigne le corps des réels ou celui des complexes. Soient a_1, a_2, a_3 trois scalaires distincts donnés de \mathbb{K} .

- 1. Montrer que $\Phi: \mathbb{K}_2[X] \longrightarrow \mathbb{K}^3$ est un isomorphisme d'espaces vectoriels. $P \longmapsto (P(a_1), P(a_2), P(a_3))$
- **2.** On note (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et on pose $\forall k \in \{1, 2, 3\}, L_k = \Phi^{-1}(e_k)$.
 - a) Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
 - b) Exprimer les polynômes L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
- 3. Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- **4. Application** : on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1).

Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.