Corrigé du DM 3

Exercice 14

1. On calcule A^2 et on constate que $X^2 - 6X + 8$ est annulateur A. De plus $X^2 - 6X + 8 = (X - 2)(X - 4)$, donc $\mu_A \in \{1, X - 2, X - 4, (X - 2)(X - 4)\}$ et $1(A) = I_3 \neq 0$, $(X - 2)(A) = A - 2I_3 \neq 0$ et $(X - 4)(A) = A - 4I_3 \neq 0$; donc :

$$\mu_A = (X - 2)(X - 4).$$

2. On sait que : $A^2 - 6A + 8I_3 = 0$, donc $A \times \frac{1}{8}(6I_3 - A) = I_3$, donc

A est inversible et
$$A^{-1} = \frac{1}{8}(6I_3 - A) = \frac{1}{8}\begin{pmatrix} 3 & -1 & 2\\ -3 & 1 & 6\\ -1 & -1 & 6 \end{pmatrix}$$
.

On pouvais remarquer que $Sp(A) = \{2,4\}$ (ensemble des racines de μ_A) donc $0 \notin Sp(A)$, donc $A \in GL_3(\mathbb{R})$, mais cela ne donne pas l'expression de l'inverse.

3. D'après le théorème de division division euclidienne de X^k par μ , il existe $Q, R \in \mathbb{R}[X]$ tels que $X^k = Q_k \mu_A + R_k$ et deg $R_k < 2$. Donc il existe $a_k, b_k \in \mathbb{R}$ tels que $R_k = a_k X + b_k$. Par évaluations en les racines de $\mu_A : 2$ et 4 de $X^k = PQ + a_k X + b_k$:

$$2^k = 2a_k + b_k et4^k = 4a_k + b_k$$

donc: $a_k = (4^k - 2^k)/2$ et $b_k = 2^{k+1} - 4^k$ donc

$$A^k = a_k A + b_k I_3.$$

Exercice 20 (CCINP 90)

 \mathbb{K} désigne le corps des réels ou celui des complexes. Soient a_1, a_2, a_3 trois scalaires distincts donnés de \mathbb{K} .

1. Montrer que $\Phi: \mathbb{K}_2[X] \longrightarrow \mathbb{K}^3$ est un isomorphisme d'es- $P \longmapsto (P(a_1), P(a_2), P(a_3))$

paces vectoriels.

- **2.** On note (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et on pose $\forall k \in \{1, 2, 3\}, L_k = \Phi^{-1}(e_k)$.
- a) Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
- b) Exprimer les polynômes L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
- **3.** Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .

4. Application : on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1).

Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

Corrigé exercice 90

1. Par linéarité de l'évaluation $P \mapsto P(a)$ (où a est un scalaire fixé), Φ est linéaire.

Soit $P \in \mathbb{K}_2[X]$ tel que $\Phi(P) = 0$.

Alors $P(a_1) = P(a_2) = P(a_3) = 0$, donc P admet trois racines distinctes.

Or P est de degré inférieur ou égal à 2; donc P est nul.

Ainsi, $Ker(\Phi) = \{0\}$ i.e. Φ est injective.

Enfin, dim $(\mathbb{K}_2[X])$ = dim (\mathbb{K}^3) = 3 donc Φ est bijective.

Par conséquent, Φ est un isomorphisme d'espaces vectoriels de $\mathbb{K}_2[X]$ dans \mathbb{K}^3 .

- **2. a)** Φ est un isomorphisme donc l'image réciproque d'une base est une base. Ainsi, (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
- b) $L_1 \in \mathbb{R}_2[X]$ et vérifie $\Phi(L_1) = (1,0,0)$ i.e. $(L_1(a_1), L_1(a_2), L_1(a_3)) = (1,0,0)$. Donc, comme a_2 et a_3 sont distincts, $(X - a_2)(X - a_3) | L_1$. Or $\deg L_1 \leqslant 2$, donc $\exists k \in \mathbb{K}$ tel que $L_1 = k(X - a_2)(X - a_3)$.

Or deg $L_1 \leq 2$, donc $\exists k \in \mathbb{K}$ tel que $L_1 = k(X - a_2)(X - a_3)$. La valeur $L_1(a_1) = 1$ donne $k = \frac{1}{(a_1 - a_2)(a_1 - a_3)}$.

Donc $L_1 = \frac{(X - a_2)(X - a_3)}{(a_1 - a_2)(a_1 - a_3)}$.

Un raisonnement analogue donne $L_2 = \frac{(X - a_1)(X - a_3)}{(a_2 - a_1)(a_2 - a_3)}$ et $L_3 = \frac{(X - a_1)(X - a_2)}{(a_3 - a_1)(a_3 - a_2)}$.

- **3.** (L_1, L_2, L_3) base de $\mathbb{K}_2[X]$ donc $\exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{K}^3$ tel que $P = \lambda_1 L_1 + \lambda_2 L_2 + \lambda_3 L_3$. Par construction, $\forall (i, j) \in \{1, 2, 3\}^2, L_i(a_j) = \delta_{ij}$ donc $P(a_j) = \lambda_j$. Ainsi, $P = P(a_1)L_1 + P(a_2)L_2 + P(a_3)L_3$.
- **4.** On pose $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$. Ces trois réels sont bien distincts.

On cherche $P \in \mathbb{R}_2[X]$ tel que $(P(a_1), P(a_2), P(a_3)) = (1, 3, 1)$.

Par bijectivité de Φ et d'après 3. , l'unique solution est le polynôme $P=1.L_1+3.L_2+1.L_3.$

On a
$$L_1 = \frac{(X-1)(X-2)}{2}$$
, $L_2 = \frac{X(X-2)}{-1}$ et $L_3 = \frac{X(X-1)}{2}$.

Donc $P = -2X^2 + 4X + 1$.