Devoir Maison n° 4. Pour le 29 septembre.

Exercice 7

Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang r, décomposée par blocs sous la forme :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

avec $A \in GL_r(\mathbb{K})$.

1. Montrer que pour tout vecteur colonne $Y \in \mathbb{K}^{n-r}$, il existe un vecteur colonne $X \in \mathbb{K}^r$ tel que :

$$M \begin{pmatrix} 0_r \\ Y \end{pmatrix} = M \begin{pmatrix} X \\ 0_{n-r} \end{pmatrix}.$$

2. En déduire que $D = CA^{-1}B$.

Exercice 18 (CCINP 85)

- **1.** Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.
 - a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P(X) dans la base $(1, X a, (X a)^2, \dots, (X a)^n)$.
 - b) Soit $r \in \mathbb{N}^*$. En déduire que : a est une racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(a) \neq 0$ et $\forall k \in [0, r-1]$, $P^{(k)}(a) = 0$.
- **2.** Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.