Devoir Maison n°5.

Deux démonstrations du théorème de Cayley-Hamilton. Pour le 13 octobre.

par trigonalisation

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On voit A comme une matrice complexe et on note $u \in \mathcal{L}(\mathbb{C}^n)$ l'endomorphisme canoniquement associé à A.

1. Montrer qu'il existe une base $\mathcal{B}=(e_1,\ldots,e_n)$ de \mathbb{C}^n telle que $T=\mathrm{Mat}_{\mathcal{B}}(u)$ est triangulaire supérieure.

On note $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux de T et pour tout $k \in [1; n], P_k = \prod_{i=1}^k (X - \lambda_i)$.

- **2.** Donner l'expression de χ_u en fonction de $\lambda_1, \ldots, \lambda_n$.
- **3.** Montrer que $\forall x \in \text{Vect}(e_1), (X \lambda_1)(u)(x) = 0_E$.
- **4.** Soit $k \in [1; n-1]$, on suppose $\mathcal{P}(k) : \forall x \in \text{Vect}(e_1, \dots, e_k), P_k(u)(x) = 0_E$.
 - a) Montrer que pour tout $x \in \text{Vect}(e_1, \dots, e_k), P_{k+1}(u)(x) = 0_E$.
 - **b)** Montrer que $(u \lambda_{k+1} \mathrm{id})(e_{k+1}) \in \mathrm{Vect}(e_1, \ldots, e_k)$.
 - **c)** En déduire que $P_{k+1}(u)(e_{k+1}) = 0_E$.
 - **d)** En déduire $\mathcal{P}(k+1): \forall x \in \text{Vect}(e_1, \dots, e_{k+1}), P_{k+1}(u)(x) = 0_E$.
- **5.** En déduire que : $\chi_A(A) = 0$.

par les matrices compagnons

Soit E un \mathbb{K} -espace vectoriel de dimension finie (non nulle) et $f \in \mathcal{L}(E)$.

- 1. On suppose qu'il existe $x \in E$ tel que $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ est une base de E.
 - a) Déterminer la matrice de f dans la base \mathcal{B} .
 - b) Calculer le polynôme caractéristique de f.
 - c) En déduire $\chi_f(f)(x)$.
- **2.** Cas général. Soit $x \in E$ un vecteur non nul.
 - a) Montrer qu'il existe un entier k supérieur à 1 tel que : $\mathcal{F} = (x, f(x), \dots, f^{k-1}(x))$ est libre et $\text{Vect}(\mathcal{F})$ est stable par f.
 - b) Déterminer la matrice de f dans une base bien choisie.
 - c) Montrer que $\chi_f(f)(x) = 0$.
- 3. Conclure.