Corrigé du DM 5

Deux démonstrations du théorème de Cayley-Hamilton

Partie 1: par trigonalisation

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On voit A comme une matrice complexe et on note $u \in \mathcal{L}(\mathbb{C}^n)$ l'endomorphisme canoniquement associé à A.

1. On sait que : $u \in \mathcal{L}(\mathbb{C}^n)$, donc $\chi_u \in \mathbb{C}[X]$. Or tout polynôme de $\mathbb{C}[X]$ est scindé dans $\mathbb{C}[X]$.

Donc : χ_u est scindé.

Donc: u est trigonalisable.

Donc:

il existe une base
$$\mathcal{B} = (e_1, \dots, e_n)$$
 de \mathbb{C}^n telle que $T = \operatorname{Mat}_{\mathcal{B}}(u)$ est triangulaire supérieure.

On note $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux de T et pour tout $k \in [1; n], P_k = \prod_{i=1}^k (X - \lambda_i)$.

2. $\chi_u = \chi_T : x \mapsto \det(xI_n - T)$

Or pour tout $x \in \mathbb{C}$, $xI_n - T$ est triangulaire supérieure, donc :

$$\chi_u = \prod_{k=1}^n (X - \lambda_k).$$

3. Par lecture des coefficients de $T = \operatorname{Mat}_{\mathcal{B}}(u) : u(e_1) = \lambda_1 e_1 + 0 e_2 + \cdots + 0 e_n = \lambda_1 e_1$

 $Donc: u(e_1) - \lambda_1 e_1 = 0_E$

donc: $(X - \lambda_1)(u)(e_1) = (u - \lambda_1 id)(e_1) = 0_E$.

De plus : $(u - \lambda_1 id) \in \mathcal{L}(E)$, donc :

$$\forall x \in \text{Vect}(e_1), (X - \lambda_1)(u)(x) = (u - \lambda_1 \text{id})(x) = 0_E$$

4. Soit $k \in [1; n-1]$, on suppose $\mathcal{P}(k) : \forall x \in \text{Vect}(e_1, \dots, e_k), P_k(u)(x) = 0$.

a) $P_{k+1} = (X - \lambda_{k+1})P_k$

donc: $P_{k+1}(u) = (u - \lambda_{k+1} \mathrm{id}) \circ P_k(u)$

or : d'après l'hypothèse de récurrence,

 $\forall x \in \text{Vect}(e_1, \dots, e_n), P_k(u)(x) = 0_E.$

Donc:

$$\forall x \in \text{Vect}(e_1, \dots, e_n), P_{k+1}(u)(x) = (u - \lambda_{k+1} \text{id})(P_k(x)) = (u - \lambda_{k+1} \text{id})(0_E) = 0_E.$$

Donc:

pour tout
$$x \in Vect(e_1, \dots, e_n), P_{k+1}(u)(x) = 0.$$

b) Pour tout $i, j \in [1; n]$ avec i < j, on note $t_{i,j}$ le coefficient i, j de la matrice T (si i > j le coefficient est nul, si i = j le coefficient est λ_i). Donc :

 $u(e_{k+1}) = t_{1,k+1}e_1 + \dots + t_{k,k+1}e_k + \lambda_{k+1}e_{k+1}$

donc: $(u - \lambda_{k+1}id)(e_{k+1}) = u(e_{k+1}) - \lambda_{k+1}e_{k+1} = t_{1,k+1}e_1 + \dots + t_{k,k+1}e_k \in Vect(e_1,\dots,e_k).$

Donc:

$$(u - \lambda_{k+1} \mathrm{id})(e_{k+1}) \in \mathrm{Vect}(e_1, \dots, e_k).$$

c) On pose $x=(u-\lambda_{k+1}\mathrm{id})(e_{k+1}),$ donc d'après la question précédente, $x\in\mathrm{Vect}(e_1,\ldots,e_k)$

et par hypothèse de récurrence, $P_k(u)(x) = 0_E$.

De plus : $P_{k+1} = P_k \times (X - \lambda_{k+1})$

donc: $P_{k+1}(u)(e_{k+1}) = P_k(u) \circ (u - \lambda_{k+1} \mathrm{id})(e_{k+1}) = P_k(u) \Big((u - \lambda_{k+1} \mathrm{id})(e_{k+1}) \Big) = P_k(u)(x) = 0_E.$

Donc:

$$P_{k+1}(u)(e_{k+1}) = 0_E.$$

d) $P_{k+1}(u) \in \mathcal{L}(E)$ et $\forall j \in [1; k+1], P_{k+1}(u)(e_j) = 0_E$, Donc:

$$\mathcal{P}(k+1): \forall x \in \text{Vect}(e_1, \dots, e_{k+1}), P_{k+1}(u)(x) = 0.$$

5. On a montré par récurrence bornée :

$$\forall k \in [1; n], \forall x \in Vect(e_1, \dots, e_k), P_k(u)(x) = 0_E,$$

donc, pour k = n, comme (e_1, \ldots, e_n) est une base de $E, \forall x \in E, P_n(u)(x) = 0_E$ donc: $P_n(u) = 0_{\mathcal{L}(E)}$.

or : $P_n = \chi_u = \chi_T = \chi_A$.

donc, en notant \mathcal{B}_0 la base canonique de \mathbb{C}^n .

$$\chi_A(A) = \operatorname{Mat}_{\mathcal{B}_0}(\chi_A(u)) = \operatorname{Mat}_{\mathcal{B}_0}(P_n(u)) = \operatorname{Mat}_{\mathcal{B}_0}(0_{\mathcal{L}(E)}) = 0_n.$$

Donc:

$$\chi_A(A) = 0.$$

par les matrices compagnons

Soit E un \mathbb{K} -espace vectoriel de dimension finie (non nulle) et $f \in \mathcal{L}(E)$.

1. On suppose qu'il existe $x \in E$ tel que $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ est une base de E.

a) On pose pour tout $k \in [1; n-1], x_k = f^k(x)$. Pour $\forall k \in [1; n-2], f(x_k) = f(f^k(x)) = f^{k+1}(x) = x_{k+1}$ pour $k = n-1, f(x_{n-1}) \in E$ or $\mathcal{B} = (x_0, \dots, x_{n-1})$ est une base de E, donc il existe $a_0, \dots, a_{n-1} \in \mathbb{K}$ tels que : $f(x_{n-1}) = \sum_{k=0}^{n-1} a_k x_k$.

Donc:

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & \cdots & \cdots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}$$

- b) Calculer le polynôme caractéristique de f: il faut le refaire, c'est un exemple dans le cours, mais ce n'est pas un résultat au programme. Donc pas ré-utilisable dans démo.
- c) idem : on a déterminé dans le chapitre 3 le polynôme minimal d'une matrice compagnon, mais ce n'est pas un résultat du cours (on n'a pas besoin d'un résultat aussi fort ici).

$$\chi_f(f)(x) = (X^n - \sum_{k=0}^{n-1} a_k X^k)(f)(x)$$

$$= f^n(x) - \sum_{k=0}^{n-1} a_k f^k(x)$$

$$= f^n(x) - \sum_{k=0}^{n-1} a_k x_k$$

$$= 0_E$$

d'après la première question (car $f^n(x) = f(x_{n-1})$).

Donc:

$$\chi_f(f)(x) = 0_E.$$

- **2.** Cas général. Soit $x \in E$ un vecteur non nul.
- a) Soit $K = \{j \in \mathbb{N}^* \mid (x, f(x), \dots, f^{j-1}(x)) \text{ est libre } \}.$

L'ensemble K est une partie de \mathbb{N}^* , on sait que $x \neq 0$, donc : (x) est libre. Donc : $1 \in K$ est non vide.

De plus : si $j > n = \dim E$, alors la famille $(x, f(x), \dots, f^{j-1}(x))$ a $j > \dim E$ vecteurs, elle est donc liée. Donc : K est majoré par n.

Donc : K est une partie non vide et majorée de \mathbb{N}^* , donc K admet un plus grand élément k.

Donc : $\mathcal{F} = (x, f(x), \dots, f^{k-1}(x))$ est libre et $(x, f(x), \dots, f^k(x))$ est liée, donc : $f(f^{k-1}(x)) = f^k(x) \in \text{Vect}(\mathcal{F})$.

De plus pour tout $j \in [0; n-2], f(f^j(x)) = f^{j+1}(x) \in \mathcal{F}$.

Donc : par linéarité de f, $Vect(\mathcal{F})$ est stable par f.

Conclusion:

k supérieur à 1 tel que : $\mathcal{F}=(x,f(x),\dots,f^{k-1}(x))$ est libre et $\mathrm{Vect}(\mathcal{F})$ est stable par f.

b) On sait que \mathcal{F} est une famille libre de E, donc d'après le théorème de la base incomplète, il existe $y_k, \ldots, y_{n-1} \in E$ tels que $\mathcal{B}' = (x_0, \ldots, x_{k-1}, y_k, \ldots, k_{n-1})$ est une base de E.

Comme $Vect(\mathcal{F})$ est stable par f, la matrice de f dans la base \mathcal{B}' est triangulaire par bloc de la forme :

$$\operatorname{Mat}_{\mathcal{B}'}(f) = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

où A est la matrice de l'endomorphisme \tilde{f} induit par f sur $\operatorname{Vect}(\mathcal{F})$.

c) D'après la question 1, appliquée à \tilde{f} sur $F = \text{Vect}(\mathcal{F})$, on a $\chi_{\tilde{f}}(\tilde{f})(x) = 0_E$. De plus, \tilde{f} est un endomorphisme induit par f sur un sous-espace stable, donc $\chi_{\tilde{f}}$ divise χ_f .

Donc : il existe $Q \in \mathbb{K}[X]$ tel que $\chi_f = Q \times \chi_{\tilde{f}}$

donc:
$$\chi_f(f)(x) = Q(f)\left(\chi_{\tilde{f}}(f)(x)\right) = Q(f)\left(\chi_{\tilde{f}}(\tilde{f})(x)\right) = Q(f)(0_E) = 0_E.$$

Donc:

$$\chi_f(f)(x) = 0.$$

3. On a montré que pour tout $x \in E \setminus \{0_E\}$, $\chi_f(f)(x) = 0_E$, donc :

$$\chi_f(f) = 0.$$