Devoir Maison n° 6. Pour le 3 novembre.

Problème

On s'intéresse dans ce problème, à travers divers exemples, à quelques méthodes pour prouver que deux matrices sont semblables.

Par la suite, n désigne un entier naturel, $n \ge 2$.

Partie I - Étude de quelques exemples

Q1. Justifier que deux matrices de $\mathcal{M}_n(\mathbb{R})$ qui sont semblables ont la même trace, le même rang, le même déterminant et le même polynôme caractéristique.

Q2. On donne deux matrices :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Vérifier que ces deux matrices ont la même trace, le même déterminant, le même rang et le même polynôme caractéristique.

Ces deux matrices sont-elles semblables? (on pourra vérifier que l'une de ces matrices est diagonalisable).

Ont-elles le même polynôme minimal?

Q3. On donne deux matrices :

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}.$$

Établir que ces deux matrices sont semblables par les deux méthodes suivantes :

première méthode : en utilisant u l'endomorphisme associé à A dans une base (e_1, e_2, e_3) d'un espace vectoriel E et en cherchant, sans calculs, une nouvelle base de E;

deuxième méthode : en prouvant que le polynôme $X^3 - 3X - 1$ admet trois racines réelles distinctes (que l'on ne cherchera pas à déterminer) notées α, β et γ .

Q4. Démontrer que toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ de rang 1 est semblable à une matrice :

On pourra utiliser l'endomorphisme u canoniquement associé à la matrice A.

Q5. Application : soit E un espace vectoriel de dimension $n \ge 2$ et u un endomorphisme de E de rang 1 vérifiant $uou \ne 0$, démontrer que u est diagonalisable. On pourra calculer U^2 . **Q6.** Démontrer qu'une matrice symétrique à coefficients complexes n'est pas nécessairement diagonalisable.

Q7. On donne une matrice
$$A = \begin{pmatrix} \alpha & \beta & \alpha & \beta \\ \beta & \alpha & \beta & \alpha \\ \alpha & \beta & \alpha & \beta \\ \beta & \alpha & \beta & \alpha \end{pmatrix}$$
 où α et β sont deux nombres complexes non nuls,

différents et non opposés.

Déterminer le rang de la matrice A et en déduire que 0 est valeur propre de A.

Justifier que $2(\alpha + \beta)$ et $2(\alpha - \beta)$ sont aussi valeurs propres de A.

Préciser une base de vecteurs propres de A.

Dans cette question, il est déconseillé de calculer le polynôme caractéristique de la matrice A.

Q8. Démontrer que quels que soient les réels non nuls a, b et le réel λ , les matrices $A = \begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}$ et $B = \begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$ sont semblables.

Partie II - Démonstration d'un résultat

On se propose de démontrer que deux matrices de $\mathcal{M}_n(\mathbb{R})$ qui sont semblables dans $\mathcal{M}_n(\mathbb{C})$ sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables dans $\mathcal{M}_n(\mathbb{C})$, il existe une matrice P inversible à coefficients complexes telle que $B = P^{-1}AP$. Écrivons P = R + iS où R et S sont deux matrices à coefficients réels.

- **Q9.** Démontrer que RB = AR et SB = AS.
- **Q10.** Justifier que la fonction $x \mapsto \det(R+xS)$ est une fonction polynomiale non identiquement nulle et en déduire qu'il existe un réel x tel que la matrice R+xS soit inversible.
- **Q11.** Conclure que les matrices A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$.
- **Q12.** Application : démontrer que toute matrice A de $\mathcal{M}_3(\mathbb{R})$ de polynôme caractéristique $X^3 + X$ est semblable à la matrice $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$.

Partie III

On s'intéresse dans cette question à la proposition P_n :

«Deux matrices de $\mathcal{M}_n(\mathbb{R})$ ayant à la fois le même polynôme caractéristique et le même polynôme minimal sont semblables dans $\mathcal{M}_n(\mathbb{R})$ ».

Q13. En étudiant les différentes valeurs possibles pour le polynôme caractéristique et le même polynôme minimal, démontrer que la proposition P_n est vraie pour n=2.

On admet qu'elle l'est également pour n=3.

Q14. Démontrer que la proposition P_n est fausse pour n=4. On pourra fournir deux matrices composées uniquement de 0 et de 1.

2