Exerices

Exercice 1.

- 1. Montrer que $\{(x,y) \in \mathbb{R}^2 \mid x+y>1\}$ est un ouvert de \mathbb{R}^2 .
- 2. Montrer que $\{(x,y) \in \mathbb{R}^2 \mid x^2 2x + 4y^2 8y \leqslant 11\}$ est un fermé de \mathbb{R}^2 .
- 3. Soit $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$, montrer que $U = \{(x, y) \in \mathbb{R}^2 \mid y > f(x)\}$ est un ouvert de \mathbb{R}^2 .

Exercice 2. On munit $\mathcal{C}([0;\pi],\mathbb{R})$ de la norme $\|.\|_{\infty}$. Soit $\Phi: \mathcal{C}([0;\pi],\mathbb{R}) \longrightarrow \mathbb{R}$ l'application définie par :

$$f \mapsto \int_0^{\pi} f(t) \cos(t) dt$$

- 1. Montrer que l'application Φ est continue.
- 2. Déterminer $\|\Phi\|$.

Exercice 3. Soit $E = \mathcal{C}([0\,;1],\mathbb{R})$ muni de la norme de la convergence uniforme $\|.\|_{\infty}$ et

$$A = \left\{ f \in E \mid f(0) = 0 \text{ et } \int_0^1 f \geqslant 1 \right\}.$$

- 1. Montrer que A est une partie fermée de E.
- 2. Montrer que : $\forall f \in A, ||f|| > 1$.
- 3. Déterminer d(0, A).

Exercice 4. On munit $\mathcal{C}([0;1],\mathbb{R})$ de la norme $\|.\|_1$. L'application $\varphi:\mathcal{C}([0;1],\mathbb{R})\longrightarrow\mathbb{R}, f\mapsto f(1)$ est-elle continue?

Exercice 5. On note ℓ^{∞} l'espace vectoriel normé des suites réelles bornées muni de la norme $\|.\|_{\infty}$ définie par $\|x\| = \sup_{n \in \mathbb{N}} |x_n|$, et on considère l'opérateur de différence $\Delta : \ell^{\infty} \longrightarrow \ell^{\infty}$ définie par $\Delta(x) = y$ où $y = (y_n)_{n \in \mathbb{N}}$ est définie par : $\forall n \in \mathbb{N}, y_n = x_{n+1} - x_n$.

- 1. Montrer que Δ est linéaire et continue.
- 2. Déterminer $\|\Delta\|$.

Exercice 6. Soit $h: \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$x \mapsto \begin{cases} 0 & \text{ si } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & \text{ si } x \in \mathbb{Q} \text{ avec } x = \frac{p}{q} \text{ irréductible}, p \in \mathbb{Z}, q \in \mathbb{N}^* \end{cases}$$

En quels points h est-elle continue?

Exercice 7. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto f(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$ et $A = \{x \in \mathbb{R} \mid f(x) = 0\}, B = \{x \in \mathbb{R} \mid f(x) \geqslant \frac{1}{2}\}.$ Est-ce que A est compacte? Est-ce que B est compacte?

Exercice 8. Soit A, B des parties d'un espace vectoriel normé E.

- 1. Montrer que si A et B sont compactes, alors A+B est compacte. Indication : considérer $f: E \times E \longrightarrow E, (x,y) \mapsto x+y$ et $f(A \times B)$.
- 2. Montrer que si A est fermée et B est compacte, alors A+B est fermée. Indication : utiliser la caractérisation séquentielle des fermés.
- 3. A-t-on l'implication : A et B fermés $\Rightarrow A + B$ fermé? Indication : considérer dans \mathbb{R}^2 l'axe des abscisses et le graphe de la fonction exponentielle.

Exercice 9.

- 1. Montrer que l'application $\Phi: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R}), A \mapsto A^\top \times A$ est continue.
- 2. Montrer que le groupe orthogonal $O_n = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A^\top \times A = I_n\}$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.

Exercice 10. Soit E un espace vectoriel normé de dimension finie. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente, ℓ sa limite et $A=\{u_n;n\in\mathbb{N}\}\cup\{\ell\}$. Montrer que A est compacte.

Exercice 11. Soit

$$N_1: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}^+$$
 $N_2: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}^+$ $A \longmapsto \sum_{1 \leqslant i,j \leqslant n} |a_{i,j}| \text{ et } A \longmapsto \max_{1 \leqslant j \leqslant n} \sum_{i=1}^n |a_{i,j}|$

- 1. Montrer que N_1 et N_2 sont des normes sur $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que $N_i(A \times B) \leq N_i(A) \times N_i(B)$ pour $i \in \{1, 2\}$.

3. Soit
$$A = \begin{pmatrix} \frac{-1}{4} & \frac{1}{5} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{2} & \frac{-1}{7} \\ \frac{1}{3} & \frac{-1}{4} & \frac{1}{7} \end{pmatrix}$$
. La suite $(A^n)_{n \in \mathbb{N}}$ converge-t-elle? Si oui, quelle est sa

limite?

Indication : on calculera ||A|| en choisissant bien la norme.

Exercice 12. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que la suite $(A^n)_{n \in \mathbb{N}}$ admet une limite B. Montrer que les seules valeurs propres éventuelles de B sont 0 et 1, que A et B commutent et que B est diagonalisable.

Exercice 13. Soit $E=\mathbb{C}[X]$ muni de la norme définie par :

$$\forall P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X], ||P|| = \sum_{k=0}^{n} |a_k|$$

- 1. Montrer que l'on définit bien ainsi une norme sur $\mathbb{C}[X]$.
- 2. L'application $P \mapsto P(X+1)$ est-elle continue?

Exercice 14.

- 1. (a) Montrer que $GL_n(\mathbb{C})$ n'est pas un fermé de $\mathcal{M}_n(\mathbb{C})$.
 - (b) Montrer que $GL_n(\mathbb{C})$ est un ouvert de $\mathcal{M}_n(\mathbb{C})$.
 - (c) Montrer que $\mathrm{GL}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$. Indication: utiliser la trigonalisation.
- 2. Soit $B \in \mathcal{M}_n(\mathbb{C})$ et $A \in \mathrm{GL}_n(\mathbb{C})$.
 - (a) Montrer que AB et BA ont le même polynôme caractéristique.
 - (b) En utilisant la densité, en déduire que le résultat reste vrai pour tout couple $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$.
- 3. Pour $A \in \mathcal{M}_n(\mathbb{C})$, on note Com(A) la comatrice de A.
 - (a) Montrer que:

$$\forall A, B \in \mathrm{GL}_n(\mathbb{C}), \mathrm{Com}(A \times B) = \mathrm{Com}(A) \times \mathrm{Com}(B).$$

Indication: utiliser $M \times \text{Com} M^{\top} = \det(M) I_n$.

(b) En déduire que :

$$\forall A, B \in \mathcal{M}_n(\mathbb{C}), \operatorname{Com}(A \times B) = \operatorname{Com}(A) \times \operatorname{Com}(B).$$

4. Montrer que l'ensemble des matrices diagonalisables à valeurs propres simples est dense dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 15. Soit $n \in \mathbb{N}^*$.

- 1. Montrer que $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.
- 2. Montrer que $\mathrm{GL}_n(\mathbb{C})$ est connexe par arcs.

Exercice 16. Soit E un espace vectoriel normé dont la boule unité fermée est compacte. L'objectif de cet exercice est de montrer que E est de dimension finie.

1. Montrer qu'il existe un nombre fini de points $x_1, \ldots, x_n \in B_f(0,1)$ tels que :

$$\forall x \in B_f(0,1), \exists k \in [1;n] \mid ||x-x_k|| < \frac{1}{2}.$$

Indication: on pourra raisonner par l'absurde.

- 2. On pose $F = \text{Vect}(x_1, \dots, x_n)$; soit $x \in E$. Montrer par récurrence que pour tout $k \in \mathbb{N}, \exists y_k \in F, u_k \in E \mid x = y_k + \frac{1}{2^{k+1}}u_k$ et $||u_k|| < 1$.
- 3. En déduire que $x \in F$.
- 4. Conclure.

Banque CCINP

Exercice 17 (CCINP 1). On note E l'espace vectoriel des applications continues sur [0,1] à valeurs dans \mathbb{R} .

On pose :
$$\forall f \in E$$
, $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$ et $||f||_1 = \int_0^1 |f(t)| dt$.

- 1. Les normes $|| \cdot ||_{\infty}$ et $|| \cdot ||_{1}$ sont-elles équivalentes? Justifier.
- 2. Dans cette question, on munit E de la norme $||\ ||_{\infty}$.
 - (a) Soit $u: \begin{cases} E \longrightarrow \mathbb{R} \\ f \longmapsto f(0) \end{cases}$ Prouver que u est une application continue sur E.
 - (b) On pose $F = \{ f \in E \mid f(0) = 0 \}$. Prouver que F est une partie fermée de E pour la norme $|| \cdot ||_{\infty}$.
- 3. Dans cette question, on munit E de la norme $|| \cdot ||_1$.

Soit
$$c: \left\{ \begin{array}{ll} [0,1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 1 \end{array} \right.$$

On pose :
$$\forall n \in \mathbb{N}^*$$
, $f_n(x) = \begin{cases} nx & \text{si } 0 \leqslant x \leqslant \frac{1}{n} \\ 1 & \text{si } \frac{1}{n} < x \leqslant 1 \end{cases}$

- (a) Soit $n \in \mathbb{N}^*$. Calculer $||f_n c||_1$.
- (b) On pose $F = \{ f \in E / f(0) = 0 \}$. On note \bar{F} l'adhérence de F.

Prouver que $c \in \bar{F}$

F est-elle une partie fermée de E pour la norme $|| \cdot ||_1$?

Exercice 18 (CCINP 37). On note E l'espace vectoriel des applications continues de [0;1] dans \mathbb{R} .

On pose :
$$\forall f \in E, N_{\infty}(f) = \sup_{x \in [0;1]} |f(x)| \text{ et } N_1(f) = \int_0^1 |f(t)| dt.$$

- 1. (a) Démontrer que N_{∞} et N_1 sont deux normes sur E.
 - (b) Démontrer qu'il existe k > 0 tel que, pour tout f de E, $N_1(f) \leq kN_{\infty}(f)$.
 - (c) Démontrer que tout ouvert pour la norme N_1 est un ouvert pour la norme N_{∞} .
- 2. Démontrer que les normes N_1 et N_{∞} ne sont pas équivalentes.

Exercice 19 (CCINP 38).

1. On se place sur $E = \mathcal{C}([0,1],\mathbb{R})$, muni de la norme $||\cdot||_1$ définie par : $\forall f \in E$,

$$||f||_1 = \int_0^1 |f(t)| dt.$$

Soit
$$u: \begin{matrix} F & \longrightarrow & E \\ F & \longmapsto & u(f) = g \end{matrix}$$
 avec $\forall x \in [0,1], g(x) = \int_0^x f(t)dt$.

On admet que u est un endomorphisme de E.

Prouver que u est continue et calculer ||u||.

Indication: considérer, pour tout entier n non nul, la fonction f_n définie par $f_n(t) = ne^{-nt}$.

$$u: (x, x, x, x) \mapsto \sum_{n=0}^{n} a_n x_n$$

2. Soit
$$n \in \mathbb{N}^*$$
. Soit $(a_1, a_2, ..., a_n) \in \mathbb{R}^n$ un n -uplet **non nul**, **fixé**. $\mathbb{R}^n \longrightarrow \mathbb{R}$ Soit $u : (x_1, x_2, ..., x_n) \longmapsto \sum_{i=1}^n a_i x_i$.

- (a) Justifier que u est continue quel que soit le choix de la norme sur \mathbb{R}^n .
- (b) On munit \mathbb{R}^n de $|| ||_2$ où $\forall x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $||x||_2 = \sqrt{\sum_{k=1}^n x_k^2}$. Calculer ||u||.
- 3. Déterminer un espace vectoriel E, une norme sur E et un endomorphisme de Enon continu pour la norme choisie. Justifier.

Remarque: Les questions 1., 2. et 3. sont indépendantes.