Corrigé du DS 2

Exercice : Matrices de rang 1 (CCINP 2025 maths 2 Problème partie 2)

Dans cet exercice, n désigne un entier naturel supérieur ou égal à 2 et A désigne une matrice de $M_n(\mathbb{R})$ de rang égal à 1.

Q1. On note $C \in M_{n,1}(\mathbb{R})$ la première colonne non nulle de A. Or A est de rang 1, donc toutes les colonnes de A sont proportionnelles à C. On note C_1, \ldots, C_n les colonnes de A, donc pour tout $i \in [1; n]$, il existe $\lambda_i \in \mathbb{R}$ tel que $C_i = \lambda_i C_i$. Donc, pour $L = \begin{pmatrix} \lambda_1 & \ldots & \lambda_n \end{pmatrix}$:

$$C \times L = (\lambda_1 C | \lambda_1 C | \dots | \lambda_n C) = A.$$

Et L est non nulle car A est non nulle.

Donc

il existe une matrice ligne $L = \in M_{1,n}(\mathbb{R})$ non nulle telle que $A = C \times L$.

Q2. On note
$$L = \begin{pmatrix} \lambda_1 & \dots & \lambda_n \end{pmatrix}$$
 et $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$. Donc pour tout $(i,j) \in [1,n]^2, a_{i,j} = 0$

 $c_i\lambda_i$. Donc:

$$L \times C = \sum_{i=1}^{n} \lambda_i c_i = \sum_{i=1}^{n} a_{i,i} = \operatorname{tr}(A).$$

Et:

$$A^{2} = (C \times L) \times (C \times L) = C \times (L \times C) \times L = \operatorname{tr}(A)C \times L = \operatorname{tr}(A)A.$$

Donc:

$$L \times C = \operatorname{tr}(A)$$
 et $A^2 = \operatorname{tr}(A)A$.

Q3. $A^2 = \operatorname{tr}(A)A$, donc $P = X^2 - \operatorname{tr}(A)X = X(X - \operatorname{tr}(A))$ est un polynôme annulateur de A. Donc le polynôme minimal μ_A de A divise P, or $X(A) = A \neq 0$ car A est de rang 1 (et pas de rang 0), et $(X - \operatorname{tr}(A))(A) = A - \operatorname{tr}(A)I_n$ et $\operatorname{tr}(A)I_n$ est de rang 0 (si $\operatorname{tr}(A) = 0$) ou de rang n (sinon); donc $A \neq \operatorname{tr}(A)I_n$, c'est à dire $A - \operatorname{tr}(A)I_n \neq 0$. Donc : $\mu_A = X(X - \operatorname{tr}(A))$.

De plus, rg(A) = 1 donc, d'après le théorème du rang,

$$\dim(\operatorname{Ker} A) = n - 1.$$

Donc: 0 est une valeur propre de A et la dimension de son sous-espace propre est n-1, donc 0 est une valeur propre d'ordre au moins n-1; donc X^{n-1} divise χ_A et $\deg(\chi_A)=n$; donc il existe $\lambda\in\mathbb{R}$ tel que $\chi_A=X^{n-1}(X-\lambda)=X^n-\lambda X^{n-1}$. De plus $\chi_A=X^n-\operatorname{tr}(A)X^{n-1}+\cdots+(-1)^n\det(A)$. Donc $\chi_A=X^{n-1}(X-\operatorname{tr}(A))$. Conclusion:

$$\mu_A = X(X - \operatorname{tr}(A)) \text{ et } \chi_A = X^{n-1}(X - \operatorname{tr}(A)).$$

Q4.

A est diagonalisable $\Leftrightarrow \mu_A$ est simplement scindé $\Leftrightarrow X(X - \operatorname{tr}(A))$ est simplement scindé $\Leftrightarrow \operatorname{tr}(A) \neq 0$.

Donc:

$$A$$
 est diagonalisable $\Leftrightarrow \operatorname{Tr}(A) \neq 0$.

On note désormais u l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

Q5. On suppose que $\operatorname{Im}(u) \cap \operatorname{Ker}(u) \neq \{0_{\mathbb{R}^n}\}$. $\operatorname{Donc\ dim}(\operatorname{Im}(u) \cap \operatorname{Ker}(u)) \neq 0$, $\operatorname{donc\ dim}(\operatorname{Im}(u) \cap \operatorname{Ker}(u)) \geqslant 1$. Or $\operatorname{rg}(A) = 1$, $\operatorname{donc\ dim}(\operatorname{Im}(u)) = 1$ et $\operatorname{Im}(u) \cap \operatorname{Ker}(u) \subset \operatorname{Im}(u)$. Donc $\operatorname{dim}(\operatorname{Im}(u) \cap \operatorname{Ker}(u)) = 1$ et $\operatorname{Im}(u) = \operatorname{Im}(u) \cap \operatorname{Ker}(u) \subset \operatorname{Ker}(u)$.

$$\operatorname{Im}(u) \subset \operatorname{Ker}(u).$$

On sait que $\operatorname{rg}(u) = \operatorname{rg}(A) = 1$ donc, d'après le théorème du rang, $\dim(\operatorname{Ker}(u)) = n - 1$. Donc, il existe un complémentaire V de $\operatorname{Ker}(u)$ dans \mathbb{R}^n et $\dim(V) = 1$, soit (e_1) une base de V.

On pose $e_2 = u(e_1)$, donc $e_2 \in \text{Im}(u) \subset \text{Ker}(u)$ et $e_1 \in V \setminus \{0\}$ et $V \cap \text{Ker}(u) = \{0\}$, donc $e_1 \notin \text{Ker}(u)$ et $e_2 = u(e_1) \neq 0$. Donc (e_2) est une famille libre de Ker(u) et d'après le théorème de la base incomplète, il existe $e_3, \ldots, e_n \in \text{Ker}(u)$ tels que (e_2, \ldots, e_n) est une base de Ker(u). Ainsi $\mathcal{B} = (e_1, \ldots, e_n)$ est une base de \mathbb{R}^n adaptée à la décomposition $V \oplus \text{Im}(u) = \mathbb{R}^n$ avec $u(e_1) = e_2$ et $\forall k \in [2; n], u(e_k) = 0$. Donc,

Donc

Q6. On suppose que $\operatorname{Im}(u) \cap \operatorname{Ker}(u) = \{0_{\mathbb{R}^n}\}.$

Or, d'après le théorème du rang, $\dim(\operatorname{Ker}(u)) + \dim(\operatorname{Im}(u)) = n$, donc : $\operatorname{Im}(u) \oplus \operatorname{Ker}(u) = \mathbb{R}^n$.

Soit (e_1, \ldots, e_n) une base de \mathbb{R}^n adaptée à $\text{Im}(u) \oplus \text{Ker}(u) = \mathbb{R}^n$, or dim(Im(u)) = 1, donc $\text{Im}(u) = \text{Vect}(e_1)$ et : $\forall i \in [2; n], u(e_i) = 0$.

De plus $u(e_1) \in \text{Im}(u) = \text{Vect}(e_1)$, donc il existe $a \in \mathbb{R}$ tel que $u(e_1) = ae_1$ et $e_1 \in \text{Im}(u) \setminus \{0\}$ et $\text{Im}(u) \cap \text{Ker}(u) = \{0\}$, donc $u(e_1) \neq 0$. Ainsi

Donc:

il existe une base de \mathbb{R}^n dans la quelle u est représenté par la matrice :

où a est un réel non nul.

Q7. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{rg}(A) = 1$.

1er cas : $\operatorname{Im}(A) \cap \operatorname{Ker}(A) \neq \{0\}$

donc d'après la question $\mathbf{Q5}$, A est semblable à la matrice

et tr(A) = 0.

2e cas: sinon $(\operatorname{Im}(A) \cap \operatorname{Ker}(A) = \{0\})$

donc d'après la question $\mathbf{Q6}$, il existe $a \in \mathbb{R}^*$ tel que A est semblable à la matrice

et $tr(A) = a \neq 0$.

Donc:

- si tr(A) = 0, alors A est semblable à N;
- si $tr(A) \neq 0$, alors A est semblable à D_a avec a = tr(A).

Soit $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices de rang 1.

- Supposons tr(A) = tr(B).
 - Si tr(A) = tr(B) = 0, alors A et B sont semblables à N, donc par transitivité, A et B sont semblables.
 - Si $tr(A) = tr(B) \neq 0$, alors A et B sont semblables à D_a avec a = tr(A), donc A et B sont semblables.
- Supposons A et B semblables. Donc il existe $P \in GL_n(\mathbb{R})$ tel que $B = P^{-1}AP$, donc :

$$tr(B) = tr((P^{-1}A)P) = tr(P(P^{-1}A)) = tr(A)$$

remarque : on utilise la propriété $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, mais $\operatorname{tr}(AB) \neq \operatorname{tr}(A)\operatorname{tr}(B)$.

Conclusion:

dans $M_n(\mathbb{R})$ deux matrices de rang 1 sont semblables si et seulement si elles ont la même trace.

Problème (CCINP 2018 maths 2 Problème)

Questions préliminaires

Q8. L'endomorphisme u est diagonalisable, il existe donc une base \mathcal{B} de \mathbb{R}^n telle que $\operatorname{Mat}_{\mathcal{B}}(u) = D = \operatorname{diag}(d_1, \ldots, d_n)$ où les d_i sont tous des valeurs propres de u. Donc $\operatorname{Mat}_{\mathcal{B}}(P(u)) = P(D) = \operatorname{diag}(P(d_1), \ldots, P(d_n))$. Chaque d_i étant racine de P, on conclut que P(D) = 0 et donc que P(u) = 0.

$$P = (X - \lambda_1) \dots (X - \lambda_p)$$
 est annulateur de u

Q9. Les μ_i étant deux à deux distincts, les polynômes $X - \mu_i$ sont premiers entre eux deux à deux. Donc d'après le lemme des noyaux,

$$\operatorname{Ker}(Q(u)) = \bigoplus_{i=1}^{r} \operatorname{Ker}(u - \mu_i Id)$$

Q annulant u, cet espace est égal à \mathbb{R}^n tout entier. En ne conservant que les μ_i tels que $\operatorname{Ker}(u - \mu_i Id) \neq \{0\}$ et en concaténant des bases de ces espaces, on obtient une base \mathcal{B} de \mathbb{R}^n constituée de vecteurs propres de u et telle que $\operatorname{Mat}_{\mathcal{B}}(u)$ est une matrice diagonale dont les coefficients diagonaux font tous partie des μ_i . Ainsi,

$$u$$
 est \mathbb{R} -diagonalisable et $\mathrm{Sp}(u) \subset \{\mu_1, \dots, \mu_r\}$

Un exemple où la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est diagonalisable sur $\mathbb R$

Q10. On a $\chi_V = X^2 - 3X + 2 = (X - 1)(X - 2)$, donc les valeurs propres de V sont donc 1 et 2. Et χ_V étant simplement scindé, V est diagonalisable à sous-espaces propres de dimension 1. Comme (2, -3) et (1, -1) sont propres, ils engendrent chacun un sous-espace propre. Donc :

$$V = PDP^{-1} \text{ avec } D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \ P = \begin{pmatrix} 2 & 1 \\ -3 & -1 \end{pmatrix}, \ P^{-1} = \begin{pmatrix} -1 & -1 \\ 3 & 2 \end{pmatrix}$$

Q11. En faisant un produit par bloc, on vérifie que Q est inversible d'inverse

$$Q^{-1} = \begin{pmatrix} -I_n & -I_n \\ 3I_n & 2I_n \end{pmatrix}$$

(il suffit de vérifier que $QQ^{-1} = I_{2n}$). Un produit par blocs montre alors que

$$Q^{-1} \begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix} Q = \begin{pmatrix} A & 0 \\ 0 & 2A \end{pmatrix}$$

ce qui donne la similitude voulue.

Q12. On obtient

A est semblable à B elle même semblable à une matrice diagonale. Par transitivité de la relation de similitude,

$$\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix}$$
est diagonalisable

Q13. On a vu que

$$\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix} = QBQ^{-1}$$

Appliquons le polynôme T qui annule la matrice de droite :

$$0 = QT(B)Q^{-1}$$

En multipliant par Q^{-1} à gauche et Q à droite, on conclut que T(B)=0. On montre par une récurrence immédiate que $B^k=\operatorname{diag}(A^k,(2A)^k)$ et en combinant linéairement, $T(B)=\operatorname{diag}(T(A),T(2A))$.

On en déduit alors que

$$T(A) = 0$$

Ainsi A est diagonalisable puisqu'elle est annulée par un polynôme simplement scindé. Finalement,

Un exemple où la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est trigonalisable sur $\mathbb R$

Q14. On note f l'endomorphisme canoniquement associé à la matrice E. Donc

$$f(1,1) = (1,1)$$

Et pour $X = (x, y) \in \mathbb{R}^2$,

$$f(x,y) = (-2)(1,1) + (x,y)$$

$$\Leftrightarrow \begin{cases} 2x - 2y = -2\\ 2x - 2y = -2 \end{cases}$$
$$\Leftrightarrow X = (y - 1, 2y)$$

Donc (pour y = 0) f(-1,0) = (-2)(1,1) + (-1,0). Et ((1,1),(-1,0)) est une base de \mathbb{R}^2 . Donc, d'après les formules de changement de base :

$$P^{-1}EP = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \text{ avec } P = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \ P^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$

Q15. De manière similaire à précédemment, $Z = \begin{pmatrix} I_n & -I_n \\ I_n & 0 \end{pmatrix}$ est inversible d'inverse $Z^{-1} = \begin{pmatrix} 0 & I_n \\ -I_n & I_n \end{pmatrix}$ et un calcul par blocs donne

Q16. Montrons par récurrence que

$$F^k = \begin{pmatrix} A^k & -2kA^k \\ 0 & A^k \end{pmatrix}$$

- C'est vrai au rang k = 0 car $F^0 = I_{2n}$.
- Supposons le résultat vrai au rang k. Il suffit alors d'un calcul par bloc pour voir que cela reste vrai au rang k+1.

En notant $U = \sum_{k=0}^{d} u_k X^k$, on en déduit que

$$U(F) = \begin{pmatrix} U(A) & V(A) \\ 0 & U(A) \end{pmatrix}$$
 avec $V(A) = -2\sum_{k=1}^{d} ku_k A^k = -2AU'(A)$

Comme U(F) = 0, on en déduit que

$$\begin{bmatrix}
U(A) & -2AU'(A) \\
0 & U(A)
\end{bmatrix} = 0$$

Q17. Ce qui précède montre que U et XU' annulent A et sont donc multiples du polynôme minimal de μ_A de A (l'ensemble des polynômes annulateurs étant l'idéal engendré par μ_A). On en déduit que μ_A divise $U \wedge XU'$.

Or, U étant scindé simple, U et U' sont premiers entre eux (aucun des diviseurs irréductible de U ne divise U') et donc $U \wedge XU' = U \wedge X$.

Ainsi, μ_A est un diviseur de X. Or $\deg(\mu_A) \geqslant 1$ (un polynôme constant non nul n'annule aucune matrice) et ainsi $\mu_A = X$ (μ_A est unitaire). Comme μ_A annule A, A est nulle.

$$\mu_A = X \text{ et } A = 0$$

Q18. Si $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix}$ est diagonalisable alors F (qui lui est semblable) l'est aussi. On vient alors de voir que A=0.

Réciproquement, si A = 0 alors $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix}$ est nulle est donc diagonalisable.

Q19. $\chi_F(\lambda) = \det(\lambda I_{2n} - F)$ est un déterminant bloc triangulaire. Avec la formule rappelée par l'énoncé,

$$\chi_F = \chi_A^2$$

Si F est trigonalisable alors χ_F est scindé et tout diviseur de χ_F l'est donc aussi. Ainsi, χ_A est scindé et A est trigonalisable.

Réciproquement, si A est trigonalisable alors χ_A est scindé et donc χ_F aussi. F est alors trigonalisable.

$$F$$
est trigonalisable sur $\mathbb R$ si et seulement si A l'est

Q20. Soit $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. On a alors $\chi_A = (X^2 + 1)$ qui n'est pas scindé sur \mathbb{R} et A n'est donc pas trigonalisable. Avec la question précédente, F ne l'est pas.