DEVOIR MAISON 3 - COMPLÉMENTS D'ALGÈBRE LINÉAIRE À rendre le mercredi 15 octobre

Dans tout le problème, E désigne un \mathbb{C} -espace vectoriel de dimension finie non nulle. Pour $u \in \mathcal{L}(E)$, on utilise les notations suivantes :

$$u^0 = \mathrm{Id}_E$$
 et pour $k \in \mathbb{N}^*$, $u^k = u \circ u^{k-1}$.

Un endomorphisme u est dit de carr'e nul lorsque u^2 est l'endomorphisme nul. Un endomorphisme u est dit nilpotent lorsqu'il existe $k \in \mathbb{N}^*$ tel que u^k est l'endomorphisme nul.

À part la dernière question, les différentes parties de ce problème sont indépendantes.

I. Cœur et nilespace d'un endomorphisme

Soit u un endomorphisme de E.

- 1. Montrer que la suite $(\text{Ker}(u^k))_{k\in\mathbb{N}}$ est une suite de sous-espaces vectoriels de E croissante pour l'inclusion.
- 2. Montrer que la suite $(\operatorname{Im}(u^k))_{k\in\mathbb{N}}$ est une suite de sous-espaces vectoriels de E décroissante pour l'inclusion.
- 3. Que peut-on dire de la suite d'entiers $\left(\dim\left(\operatorname{Ker}(u^k)\right)\right)_{k\in\mathbb{N}}$?

 Montrer qu'il existe $r\in\mathbb{N}^*$ tel que pour tout entier $k\geqslant r$, $\dim\left(\operatorname{Ker}(u^k)\right)=\dim\left(\operatorname{Ker}(u^r)\right)$.
- 4. En déduire que pour tout entier $k \ge r$, $\operatorname{Ker}(u^k) = \operatorname{Ker}(u^r)$ et $\operatorname{Im}(u^k) = \operatorname{Im}(u^r)$.

Les sous-espaces $Ker(u^r)$ et $Im(u^r)$ sont appelés nilespace et cœur de l'endomorphisme u.

- 5. (a) Établir que $E = \text{Ker}(u^r) \oplus \text{Im}(u^r)$.
 - (b) Montrer que $Ker(u^r)$ et $Im(u^r)$ sont stables par u.
 - (c) On note u_1 l'endomorphisme induit par u sur $Ker(u^r)$. Montrer que u_1 est un endomorphisme nilpotent de $Ker(u^r)$.
 - (d) On note u_2 l'endomorphisme induit par u sur $\text{Im}(u^r)$. Montrer que u_2 est un automorphisme de $\text{Im}(u^r)$.

II. Endomorphismes échangeurs

Un endomorphisme u de E est dit échangeur lorsqu'il existe des sous-espaces vectoriels F et G de E tels que

$$E = F \oplus G$$
, $u(F) \subset G$ et $u(G) \subset F$.

A. Cas de la dimension 2

Dans cette partie A. uniquement, on suppose que E est de dimension 2. Soit u un endomorphisme non nul de E.

- 1. On suppose dans cette question 1. uniquement que u est échangeur. Soit F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$, $u(F) \subset G$ et $u(G) \subset F$.
 - (a) Montrer que $\dim(F) = \dim(G) = 1$.
 - (b) En déduire, en utilisant la matrice de u dans une base bien choisie, la valeur de la trace de u notée Tr(u).
- 2. On suppose dans cette question 2. uniquement que Tr(u) = 0.
 - (a) On fait l'hypothèse dans cette question 2.(a) uniquement que (e_1, e_2) une base de E telle que les familles $(e_1, u(e_1))$ et $(e_2, u(e_2))$ sont toutes deux liées.
 - i. Montrer que la matrice de u dans la base (e_1, e_2) est de la forme :

$$\begin{pmatrix} \alpha & 0 \\ 0 & -\alpha \end{pmatrix} \text{ avec } \alpha \in \mathbb{C} \setminus \{0\}.$$

- ii. On pose $e_3 = e_1 + e_2$. En déduire que la famille $(e_3, u(e_3))$ est libre.
- (b) Montrer qu'il existe un vecteur x_0 de E tel que la famille $(x_0, u(x_0))$ soit une base de E.
- (c) En utilisant la matrice de u dans la base $(x_0, u(x_0))$, établir que u est échangeur.
- 3. Quelle équivalence a-t-on démontrée dans cette partie?

On revient au cas général, E est désormais de dimension finie non nulle quelconque.

L'objectif de la fin du problème est d'établir pour $u \in \mathcal{L}(E)$, l'équivalence entre les deux conditions suivantes :

- (C1) L'endomorphisme u est échangeur.
- (C2) Il existe deux endomorphismes a et b de E, tous deux de carré nul, tels que u = a + b.
 - B. La condition (C1) implique La condition (C2)

Soit n et p deux entiers naturels non nuls. Soit $A \in \mathcal{M}_{p,n}(\mathbb{C})$ et $B \in \mathcal{M}_{n,p}(\mathbb{C})$. On considère dans $\mathcal{M}_{n+p}(\mathbb{C})$ la matrice

$$M = \begin{pmatrix} 0_n & B \\ A & 0_p \end{pmatrix}.$$

2

1. Calculer le carré de la matrice $\begin{pmatrix} 0_n & B \\ 0_{p,n} & 0_p \end{pmatrix}$ de $\mathcal{M}_{n+p}(\mathbb{C})$. Montrer alors que M est la somme de deux matrices de carré nul. Jusqu'à la fin de cette partie B., u désigne un endomorphisme échangeur de E et on se donne donc une décomposition $E = F \oplus G$ dans laquelle F et G sont des sous-espaces vectoriels vérifiant $u(F) \subset G$ et $u(G) \subset F$.

- 2. On suppose dans cette question F et G tous deux non nuls. Compte-tenu des hypothèses, décrire la forme de la matrice u dans une base adaptée à la décomposition $E=F\oplus G$.
- 3. En déduire que u vérifie (C2).

 On n'oubliera pas de considérer le cas où l'un des sous-espaces F ou G est nul.
- C. LA CONDITION (C2) IMPLIQUE (C1): CAS D'UN AUTOMORPHISME

Dans cette partie C., u désigne un automorphisme de E et on suppose qu'il existe deux endomorphismes a et b de E tels que

$$u = a + b$$
 et $a^2 = b^2 = 0_{\mathcal{L}(E)}$.

1. Soit f un endomorphisme de E tel que $f^2 = 0_{\mathscr{L}(E)}$. Comparer $\mathrm{Ker}(f)$ et $\mathrm{Im}(f)$ et en déduire

$$\dim(\operatorname{Ker}(f)) \geqslant \frac{1}{2}\dim(E).$$

- 2. Démontrer que $E = \operatorname{Ker}(a) \oplus \operatorname{Ker}(b)$, $\operatorname{Ker}(a) = \operatorname{Im}(a)$ et $\operatorname{Ker}(b) = \operatorname{Im}(b)$.
- 3. En déduire que u est échangeur.
- D. LA CONDITION (C2) IMPLIQUE (C1): CAS NON BIJECTIF

On admet la validité de l'énoncé suivant.

Théorème : Tout endomorphisme nilpotent d'un espace vectoriel de dimension finie est échangeur.

Dans cette partie D., u désigne un endomorphisme non bijectif de E et on suppose qu'il existe deux endomorphismes a et b de E tels que

$$u = a + b$$
 et $a^2 = b^2 = 0_{\mathcal{L}(E)}$.

- 1. Montrer que a et b commutent avec u^2 .
- 2. Soit p un entier pair. Montrer que le sous-espace vectoriel $G = \text{Im}(u^p)$ est stable par a et b et que les endomorphismes induits a_G et b_G sont de carré nul.
- 3. En déduire que u est échangeur. On pourra utiliser, entre autres, les résultats établis dans les parties I. et II.C.