DM4 (Suites et séries de fonctions) Pour le 3 novembre

Problème 1 : Comparaison des modes de convergence d'une série de fonctions

Dans toute la suite, $\sum f_n$ est une série de fonctions définies sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{R} .

Dans ce sujet exclusivement, on dira que la série de fonctions $\sum f_n$ converge absolument sur I lorsque pour tout $x \in I$, la série numérique $\sum f_n(x)$ converge absolument.

Le but de ce problème est de comparer les différents modes de convergence d'une série de fonctions : convergence simple, convergence uniforme, convergence normale et convergence absolue.

- 1. Pour chaque couple d'assertions ci-dessous, préciser l'implication logique donnée par le cours en indiquant \Leftarrow ou \Rightarrow entre les deux :
 - (a) $\left[\sum f_n \text{ converge uniformément sur } I\right] \dots \left[\sum f_n \text{ converge normalement sur } I\right]$
 - (b) $\left[\sum f_n \text{ converge uniformément sur } I\right] \dots \left[\sum f_n \text{ converge simplement sur } I\right]$
 - (c) $\left[\sum f_n \text{ converge absolument sur } I\right] \dots \left[\sum f_n \text{ converge normalement sur } I\right]$
 - (d) $\left[\sum f_n \text{ converge absolument sur } I\right] \dots \left[\sum f_n \text{ converge simplement sur } I\right]$
- 2. Étudier chacun des quatre modes de convergence pour la série de fonctions $\sum f_n$ sur I dans les deux cas suivants :
 - (a) $I = \mathbb{R}$ et pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $f_n(x) = \frac{\cos(nx)}{2^n} + \frac{\sin(nx)}{3^n}$.
 - (b) $I = \mathbb{R}$ et pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $f_n(x) = \frac{\cos(nx)}{n+1}$.
- **3.** Dans cette question, on pose pour $n \in \mathbb{N}^*$ et $x \in [0,1]$, $f_n(x) = (-1)^n \left(\frac{x^2 + n}{n^2}\right)$.
 - (a) Montrer que la série de fonctions $\sum_{n\geq 1} f_n$ converge simplement sur [0,1].
 - (b) Montrer que la série $\sum_{n\geqslant 1} f_n(x)$ ne converge absolument en aucune valeur x de [0,1].
 - (c) Montrer que la série de fonctions $\sum_{n\geq 1} f_n$ converge uniformément sur [0,1].
- **4.** Dans cette question, on pose pour $n \in \mathbb{N}$ et $x \in]-1,1[, f_n(x) = x^n]$.

- (a) Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur] 1, 1[.
- (b) Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur] 1,1[.
- (c) Montrer que la série de fonctions $\sum f_n$ converge absolument sur] 1, 1[.

Dans les questions 5. à 8., $(\alpha_n)_{n\geqslant 1}$ désigne une suite décroissante de réels positifs, I=[0,1[et on a pour tout $n\in\mathbb{N}^*$ et tout $x\in I$:

$$f_n(x) = \alpha_n x^n (1 - x).$$

- 5. Justifier que la suite $(\alpha_n)_{n\geqslant 1}$ est bornée et montrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge simplement sur I.
- **6.** (a) Pour $n \in \mathbb{N}^*$, montrer que $\sup_{x \in I} |f_n(x)| = \alpha_n \frac{n^n}{(n+1)^{n+1}}$.
 - (b) Démontrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge normalement sur I si et seulement si la série de réels positifs $\sum_{n\geqslant 1} \frac{\alpha_n}{n}$ converge.
- 7. (a) Pour $n \in \mathbb{N}^*$ et $x \in I$, calculer $\sum_{k=n+1}^{+\infty} x^k$.
 - (b) Montrer que si la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0 alors la série de fonctions $\sum_{n\geqslant 1} f_n$ converge uniformément sur I.

 On pourra observer que pour tout $k\geqslant n+1$, on a $\alpha_k\leqslant \alpha_{n+1}$.
 - (c) Réciproquement, démontrer que si la série de fonctions $\sum_{n\geqslant 1} f_n$ converge uniformément sur I alors la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0.
- 8. Dans chacun des cas suivants, donner en détaillant, un exemple de suite décroissante de réels positifs $(\alpha_n)_{n\geqslant 1}$ telle que :
 - (a) La série de fonctions $\sum_{n\geqslant 1} f_n$ converge normalement sur I.
 - (b) La série de fonctions $\sum_{n\geq 1} f_n$ ne converge pas uniformément sur I.
 - (c) La série de fonctions $\sum_{n\geqslant 1}f_n$ converge uniformément sur I mais ne converge pas normalement sur I.
- 9. Montrer à l'aide de contre-exemples tirés des questions précédentes que les implications réciproques des implications établies à la question 1. sont fausses.
- 10. Existe-t-il des implications logiques entre les assertions $[\sum f_n$ converge uniformément sur I] et $[\sum f_n$ converge absolument sur I]? Prouver vos affirmations.

Problème 2 : Théorème de Weierstrass

Le but de ce problème est de démontrer le théorème de Weierstrass :

Si f est une fonction continue sur [0,1] à valeurs dans \mathbb{R} alors il existe une suite (P_n) de fonctions polynômiales convergeant uniformément vers f sur [0,1].

1. On considère dans cette question la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout entier $n\geqslant 1$ par :

$$u_n = \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} = \prod_{k=1}^{n} \left(\frac{2k-1}{2k}\right)$$

- (a) On pose pour tout entier naturel $n \ge 1$, $v_n = \sqrt{n} u_n$. Montrer que la suite $(v_n)_{n \in \mathbb{N}^*}$ est croissante.
- (b) Étudier la nature de la série de terme général $w_n = \ln\left(\frac{v_{n+1}}{v_n}\right)$ pour $n \in \mathbb{N}^*$.
- (c) Démontrer que la suite $(v_n)_{n\in\mathbb{N}^*}$ est convergente . On note L sa limite. Comparer, pour tout entier $n\in\mathbb{N}^*$, les réels u_n et $\frac{L}{\sqrt{n}}$.
- 2. On considère dans cette question la fonction $\varphi: x \mapsto \varphi(x) = \sqrt{1-x}$ pour $x \in [0,1]$.
 - (a) Déterminer la dérivée d'ordre n de $\varphi: x \mapsto \varphi^{(n)}(x)$ pour $x \in [0, 1[$.
 - (b) Soit $x \in [0,1[$. La formule de Taylor avec reste intégrale appliquée à φ sur [0,x] s'exprime sous la forme $\varphi(x) = P_n(x) + R_n(x)$ où P_n est une fonction polynomiale de degré n et :

$$R_n(x) = \frac{1}{n!} \int_0^x (x - t)^n \varphi^{(n+1)}(t) dt$$

Exprimer les coefficients de P_n en fonction de n. Donner la valeur de P_4 .

(c) Démontrer la majoration :

$$\forall x \in [0, 1[, |R_n(x)| \le \frac{1}{2}u_n \int_0^x (1-t)^{-1/2} dt$$

En déduire :

$$\forall x \in [0, 1[, |R_n(x)| \leqslant u_n)$$

(d) Démontrer que la suite de fonctions polynomiales $(P_n)_{n\in\mathbb{N}^*}$ converge uniformément sur [0,1] vers la fonction φ .

Dans la question suivante, on note Q_n le polynôme tel que $Q_n(x) = P_n(1-x^2)$.

(e) Soit ε un réel strictement positif et M une constante strictement positive. Démontrer que si l'entier naturel N vérifie $N \geqslant \frac{L^2 M^2}{\varepsilon^2}$ alors

$$\forall x \in [-1, 1], ||x| - Q_N(x)| \leq \frac{\varepsilon}{M}$$

3. On considère dans toute la suite une fonction f continue sur [0,1] et ε un réel strictement positif.

On admet qu'il existe un entier naturel $n \ge 2$ tel que

$$\forall (x,y) \in [0,1]^2, |x-y| < 1/n \Rightarrow |f(x) - f(y)| < \varepsilon$$

3

Dans la suite du problème, n désigne l'entier ainsi défini.

(a) Soit g la fonction définie sur [0,1], vérifiant pour tout $k \in \mathbb{N}$ avec $0 \le k \le n$, $g\left(\frac{k}{n}\right) = f\left(\frac{k}{n}\right)$, et affine sur chacun des intervalles [k/n, (k+1)/n] pour $0 \le k \le n-1$.

Déterminer l'expression de g(x) lorsque $\frac{k}{n} \le x \le \frac{k+1}{n}$.

(b) Démontrer que $\forall x \in [0,1], |g(x) - f(x)| < \varepsilon$.

On pourra remarquer que l'on peut écrire g(x) sous la forme $\alpha f(\frac{k}{n}) + (1-\alpha)f(\frac{k+1}{n})$.

4. Dans cette question, on considère les matrice $A_{n+1} \in \mathcal{M}_{n+1}(\mathbb{R})$ et $B_{n+1} \in \mathcal{M}_{n+1}(\mathbb{R})$ de termes généraux respectifs :

$$\left(a_{i,j} = |i-j|\right)_{1 \leq i,j \leq n+1} \quad \text{et} \quad \begin{cases} b_{i,i} = -1 \text{ si } i \neq 1 \text{ et } i \neq n+1 \\ b_{1,1} = b_{n+1,n+1} = \frac{1-n}{2n} \\ \text{si } |i-j| = 1 \text{ alors } b_{i,j} = \frac{1}{2} \\ b_{1,n+1} = b_{n+1,1} = \frac{1}{2n} \\ b_{i,j} = 0 \text{ dans tous les autres cas} \end{cases}$$

On admettra que A_{n+1} est inversible et que $A_{n+1}^{-1} = B_{n+1}$ (ce résultat est démontré en partie à la question 6.)

(a) Soit E_{n+1} l'espace vectoriel des fonctions g définies sur [0,1] à valeurs dans \mathbb{R} , telles que g soit affine sur chacun des intervalles [k/n, (k+1)/n] pour $0 \le k \le n-1$. Soit d'autre part Φ l'application de E_{n+1} dans \mathbb{R}^{n+1} telle que

$$\forall g \in E_{n+1}, \ \Phi(g) = \left(g\left(\frac{k}{n}\right)\right)_{0 \le k \le n}$$

Démontrer que Φ est un isomorphisme de E dans \mathbb{R}^{n+1} et expliciter l'unique fonction $g_{\alpha} \in E_{n+1}$ telle que $\Phi(g) = (a_0, a_1, ..., a_n)$ où $\alpha = (a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$.

(b) Pour tout entier j avec $0 \le j \le n$, on note $f_j \in E_{n+1}$ l'application

$$t\mapsto f_j(t)=\left|t-\frac{j}{n}\right|$$

Montrer que la famille $(f_j)_{0 \le j \le n}$ est une base de E_{n+1} : on pourra par exemple expliciter la matrice de la famille des vecteurs $(\Phi(f_j))_{0 \le j \le n}$ dans la base canonique de \mathbb{R}^{n+1} .

(c) Soit $\alpha = (a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$ et $g_{\alpha} \in E_{n+1}$ la fonction définie à la question 4.a), telle que pour tout $k \in \{0, 1, ..., n\}$, $g_{\alpha}\left(\frac{k}{n}\right) = a_k$.

Démontrer qu'il existe n+1 réels $\lambda_0, \lambda_1, ..., \lambda_n$ tels que :

$$\forall x \in [0,1], g_{\alpha}(x) = \sum_{k=0}^{n} \lambda_k f_k(x)$$

Déterminer la valeur des coefficients λ_k pour $0 \le k \le n$ en fonction de $(a_0, a_1, ..., a_n)$.

5. (a) On considère la fonction q définie à la question 3.a)

Déterminer $\alpha \in \mathbb{R}^{n+1}$ tel que $g = g_{\alpha}$.

En déduire l'expression à l'aide de f des coefficients λ_k pour $1 \le k \le n-1$ de la question 4.c).

On pose $M = \sum_{k=0}^{n} |\lambda_k|$ et on note Q_N le polynôme correspondant défini à la question 2.e).

4

(b) On pose

$$R(x) = \sum_{k=0}^{n} \lambda_k Q_N \left(x - \frac{k}{n} \right)$$

Démontrer que :

$$\sup_{x \in [0,1]} |f(x) - R(x)| \le 2\varepsilon$$

- (c) Conclure.
- 6. On revient sur la matrice A_{n+1} étudiée à la question 4. Calculer $\det(A_{n+1})$ en fonction de n. On effectuera pour cela les opérations suivantes :
 - \star pour i allant de n+1 à 2, remplacer la ligne L_i par la ligne L_i-L_{i-1}
 - $\star\,$ pour j allant de 2 à n, remplacer la colonne C_j par la colonne C_j C_1

En déduire que A_{n+1} est inversible.