Applications - sommes - étude de fonctions DS2 - durée : 3h

PCSI2 - Mathématiques 10 octobre 2025

Exercice 1 : Petites études de fonctions

Les 2 questions de cet exercice sont indépendantes.

Soit la fonction f définie par

$$f: x \mapsto (x^2 - 1)\sqrt{x - 1}$$

- a) Déterminez l'ensemble de définition de f, justifiez que f est dérivable sur $]1,+\infty[$ et calculez f'(x) pour tout $x\in]1,+\infty[$
- b) Montrez que f est dérivable en 1, précisez f'(1) et donnez l'équation de la tangente à la courbe représentative de f en 1.
- 2. Soit f la fonction définie par

$$f(x) = \frac{1}{\sqrt{x^2 + 2x + 2}}$$

- a) Montrez que f est définie et dérivable sur $\mathbb R$ et dressez son tableau de variation.
- b) La fonction f est-elle injective sur \mathbb{R} ? on justifiera soigneusement cette réponse....
- 1. a) f est définie sur $[1 + \infty[$ afin de garantir l'existence de $\sqrt{x-1}$. De plus, sur $]1, +\infty[$, x-1>0, donc par composition, puis produit de fonctions dérivables sur $]1+\infty[$, f y est dérivable.

Enfin, pour tout
$$x \in]1, +\infty[$$
, $f'(x) = 2x\sqrt{x-1} + \frac{x^2-1}{2\sqrt{x-1}} = \frac{5x^2-4x-1}{2\sqrt{x-1}}$

b) On regarde le taux de variation en 1. La clé est de factoriser $x^2 - 1$ en (x - 1)(x + 1). On obtient alors

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} (x + 1)\sqrt{x - 1} = 0$$

Ainsi f est dérivable en 1 avec f'(1) = 0 et on a une tangente horizontale d'équation y = f(1), c'est à dire y = 0.

2. a) On commence par discuter du polynôme $x^2 + 2x + 2$, dont le discriminant est négatif. Ainsi $\forall x \in \mathbb{R}, x^2 + 2x + 2 > 0$. La fonction est donc définie sur \mathbb{R} , et dérivable sur ce même ensemble par composition de fonctions dérivables ($\sqrt{}$ est dérivable sur \mathbb{R}_+^*).

On a alors,
$$\forall x \in \mathbb{R}, f'(x) = -\frac{x+1}{\sqrt{x^2+2x+2}} \times \frac{1}{(1+2x+x^2)}$$
, du signe de $-(x+1)$.

On en déduit le tableau de variation suivant

$$\begin{array}{c|cccc}
x & 0 & -1 & +\infty \\
f'(x) & + & 0 & - \\
f(x) & & & 1 & \\
\end{array}$$

b) D'après le théorème des valeurs intermédiaires, comme f(-1) = 1 et $\lim_{+\infty} f(x) = 0$, il existe $x_1 \in]1, +\infty[$ tel que $f(x_1) = \frac{1}{2}$. De même, il existe $x_2 \in]-\infty, -1[$ tel que $f(x_2) = \frac{1}{2}$. Ainsi, $x_1 \neq x_2$ mais $f(x_1) = f(x_2) : f$ n'est donc pas injective.

Exercice 2 : Newton à moitié

Soit
$$n \in \mathbb{N}^*$$
. On pose $S_n = \sum_{k=0}^n \binom{n}{k}$ et $D_n = \sum_{k=0}^n (-1)^k \binom{n}{k}$

- Soit $n \in \mathbb{N}^*$. On pose $S_n = \sum_{k=0}^n \binom{n}{k}$ et $D_n = \sum_{k=0}^n (-1)^k \binom{n}{k}$.

 1. Donner la valeur explicite (éventuellement en fonction de n) de S_n et de D_n .

 2. Soit $A_n = \sum_{\substack{0 \le k \le n \\ k \text{ pair }}} \binom{n}{k}$ et soit $B_n = \sum_{\substack{0 \le k \le n \\ k \text{ impair }}} \binom{n}{k}$

 - b) En déduire A_n et B_n
- 1. C'est ce qu'on a fait en DM, où il fallait reconnaître des binômes de Newton, ainsi :

$$S_n = \sum_{k=0}^n \binom{n}{k} 1^k 1^{n-k} = (1+1)^n = \boxed{2^n}$$

$$D_n = \sum_{k=0}^{n} (-1)^k 1^{n-k} \binom{n}{k} = (1-1)^n = \boxed{0} \ (n > 0, \text{ donc } 0^n = 0).$$

a) En fait $A_n + B_n = S_n$: c'est comme en TD: la somme des pairs et des impairs donne tous les termes.

D'autre part, comme $(-1)^k = 1$ si k est pair, et -1 si k est impair, on a en fait $A_n - B_n =$

 $(S_n \text{ comme } \mathbf{S} \text{omme}, \text{ et } D_n \text{ comme } \mathbf{D} \text{ifférence}).$

Ainsi, on a

$$\begin{cases}
A_n + B_n = 2^n \\
A_n - B_n = 0
\end{cases}$$

b) Il suffit de résoudre le mini système qui donne $A_n = B_n = 2^{n-1}$

lackExercice $f 3: Etude\ de\ fonction$ - f bijection

Soit la fonction f définie par

$$f: x \mapsto \frac{1}{e^x + e^{-x}}$$

- 1. Partie 1 : Etude de f
 - a) Déterminer l'ensemble de définition de f
 - b) Montrez que f est paire
 - c) Justifiez que f est dérivable sur son domaine de définition et calculer l'expression de sa dérivée
 - d) Établir le tableau de variation de f en précisant les limites aux bornes de l'ensemble de définition
 - e) Tracer la courbe représentative de f en faisant apparaitre explicitement les propriétés remarquées dans l'étude
- 2. Partie 2 : Bijectivité
 - a) Justifiez que f restreinte à $[0, +\infty[$ est une bijection de $[0, +\infty[$ dans un intervalle à déterminer.
 - b) Donner le tableau de variation de f^{-1} , complété par les limites. (indication : ne cherchez surtout pas à dériver...)
 - c) Tracer la courbe de f^{-1}
- 3. Partie 3 : expression explicite de la réciproque
 - a) Soit $y \in]0, \frac{1}{2}]$. On considère l'équation

$$x^2 - \frac{1}{y}x + 1 = 0$$

Justifiez que $1-4y^2\geq 0$ et en déduire que cette équation admet deux solutions réelles, que l'on notera r_1 et r_2

- b) Montrez que r_1 et r_2 sont positives et que $r_1r_2=1$
- c) En déduire que la plus grande des deux solutions est nécessairement supérieur ou égale à 1
- d) Soit $y \in]0, \frac{1}{2}]$. Résoudre l'équation

$$\frac{1}{e^x + e^{-x}} = y$$

On pourra poser $X = e^x$.

- e) Déterminez f^{-1} .
- a) Pour tout $x \in \mathbb{R}$, $e^x > 0$ et $e^{-x} > 0$, d'où $e^x + e^{-x} > 0$ et donc non nul. Ainsi f est définie sur \mathbb{R} .
 - b) Pour tout $x \in \mathbb{R}$, $f(-x) = \frac{1}{e^{-x} + e^{-(-x)}} = \frac{1}{e^{-x} + e^x} = f(x)$.

La fonction est bien paire.

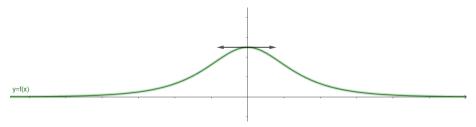
c) Par composition, somme et quotient de fonction dérivable f est dérivable et on a

$$f'(x) = -(e^x - e^{-x})\frac{1}{(e^x + e^{-x})^2} = \frac{e^{-x} - e^x}{(e^x + e^{-x})^2}$$

d) La dérivée est du signe de $e^{-x} - e^x$. Or, $e^{-x} - e^x \ge 0 \Leftrightarrow e^{-x} \ge e^x \Leftrightarrow -x \ge x$ par strict croissance de ln. Ainsi, $f'(x) \ge 0 \Leftrightarrow 0 \ge 2x \Leftrightarrow x \le 0$. Les limites en $+\infty$ et $-\infty$ sont évidentes (pas de forme indéterminées) D'où le tableau de variation :

x	$-\infty$	0	$+\infty$
f'(x)	+	0	_
f	0	$\frac{1}{2}$	0

e) L'étude précédente donne une asymptote horizontale en $+\infty$ et $-\infty$, d'équation y=0 (c'est l'axe des abscisses) et une tangente en 0, horizontale, d'équation $y=\frac{1}{2}$.

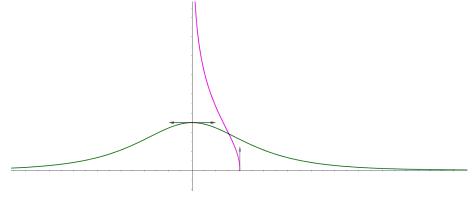


- 2. a) f est strictement décroissante sur $[0, +\infty[$ et est continue, donc f est une bijection de $[0, +\infty[$ dans $f([0, +\infty[) =]0; \frac{1}{2}]$ (attention à ne pas se tromper sur les bornes : le 0 est exclu dans l'ensemble d'arrivée, puisque c'est une limite à l'infini d'une fonction strictement décroissante. La valeur $\frac{1}{2}$ est incluse puisqu'elle est atteinte (c'est f(0)).)
 - b) f^{-1} est de même monotonie que f et on a donc

x	$0 \qquad \qquad \frac{1}{2}$
f^{-1}	$+\infty$ 0

c) On commence par retracer la courbe de f, en notant la tangente horizontale en 0. On effectue ensuite la symétrie par rapport à la droite d'équation y=x. La tangente horizontale se transforme alors en tangente verticale en $\frac{1}{2}$ (f^{-1} n'est donc pas dérivable en ce point....)

Avec en vert la courbe en f et en rose celle de f^{-1} , cela donne :



$$x^2 - \frac{1}{y}x + 1 = 0$$

est une équation du second degré, avec un discriminant $\Delta = \frac{1}{u^2} - 4 = \frac{1 - 4y^2}{u^2}$

Comme $y \in]0, \frac{1}{2}]$, on a $0 < y^2 \le \frac{1}{4}$, d'où $-1 \ge -4y^2 < 0$ et finalement $0 \le 1 - 4^2 \le 1$.

Ainsi, $\Delta \geq 0$ et l'équation admet deux solutions, r_1 et r_2 , confondues si $y = \frac{1}{2}$.

b) Comme
$$y > 0$$
, $\sqrt{y^2} = y$ et donc $\sqrt{\Delta} = \frac{\sqrt{1 - 4y^2}}{y}$

Ainsi,
$$r_1 = \frac{\frac{1}{y} + \frac{\sqrt{1 - 4y^2}}{y}}{2} = \frac{1 + \sqrt{1 - 4y^2}}{2y}$$
 et $r_2 = \frac{1 - \sqrt{1 - 4y^2}}{2y}$

A nouveau, étant donné que $y>0,\,r_1$ est immédiatement positive ou nulle.

pour r_2 , on sait que $0 \le 1 - 4y^2 \le 1$, donc $0 \le \sqrt{1 - 4y^2} \le 1$ et donc $1 - \sqrt{1 - 4y^2} \ge 0$. Ainsi $r_2 \ge 0$ également.

Enfin r_1 et r_2 sont les deux racines du polynôme, donc $r_1r_2=\frac{1}{1}=1$

(alternative : on peut, après avoir dit que r_1 était positif, dire que le produit $r_1r_2 = 1$, donc $r_1r_2 > 0$ et donc que r_1 et r_2 sont positifs tous les deux, d'où r_2 positif)

- c) Supposons que les deux racines sont inférieures strictement à 1 et positives On a alors $0 \le r_1 < 1$ et $0 \le r_2 < 1$, donc $0 < r_1r_2 < 1$ (la positivité est essentielle ici pour que l'inégalité ne change pas) : c'est une contradiction avec $r_1r_2 = 1$. Ainsi l'une au moins des racines est supérieure à 1. L'autre est alors nécessairement plus
- d) Comme $y \neq 0$, on peut écrire :

petite que 1.

$$\frac{1}{e^x + e^{-x}} = y \Leftrightarrow e^x + e^{-x} = \frac{1}{y}$$

Posons maintenant $X = e^x$. L'équation devient

$$X + \frac{1}{X} = \frac{1}{y} \Leftrightarrow \frac{X^2 + 1 - \frac{X}{y}}{X} = 0 \Leftrightarrow X^2 - \frac{1}{y}X + 1 = 0$$

On retrouve le polynôme de la question 3a).

Ainsi $X = r_1$ ou $X = r_2$, c'est à dire $x = \ln(r_1)$ ou $x = \ln(r_2)$.

e) Soit $y \in]0, \frac{1}{2}]$. On cherche maintenant l'unique $x \ge 0$ tel que f(x) = y (on sait qu'il n'y en a qu'un puisqu'on a montré que f était bijective sur $[0, +\infty[$.

Cela donne la même équation que la question d), avec cette fois $x \ge 0$, donc $e^x \ge 1$.

Il faut donc prendre la racine qui est supérieure à 1, qui est la plus grande des deux, Donc

$$e^x = r_1$$
 et finalement $x = \ln(\frac{1 + \sqrt{1 - 4y^2}}{2y})$.

Ainsi,

$$f^{-1}: \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \to [0, +\infty[\\ x \mapsto \ln\left(\frac{1 + \sqrt{1 - 4x^2}}{2x}\right) \end{bmatrix}$$

Exercice 4 : Somme des carrés

Soit
$$n \in \mathbb{N}$$
 et soit $C_n = \sum_{k=0}^n k^2$.

Soit $n \in \mathbb{N}$ et soit $C_n = \sum_{k=0}^n k^2$. L'objectif de l'exercice est de montrer la formule du cours donnant C_n , mais sans utiliser de récurrence.

1. Montrez que que
$$\sum_{k=0}^{n} (k+1)^3 - k^3 = (n+1)^3$$

2. Soit
$$k \in \mathbb{N}$$
. Justifiez que $(k+1)^3 - k^3 = 3k^2 + 3k + 1$

2. Soit
$$k \in \mathbb{N}$$
. Justifiez que $(k+1)^3 - k^3 = 3k^2 + 3k + 1$
3. En déduire que $(n+1)^3 = 3C_n + 3\frac{n(n+1)}{2} + n + 1$ et montrez qu'on retrouve la formule du cours.

1. C'est un telescopage:

$$\sum_{k=0}^{n} (k+1)^3 - k^3 = \sum_{k=1}^{n+1} (k+1)^3 - \sum_{k=0}^{n} k^3 = (n+1)^3 - 0^3 = (n+1)^3$$

2. Le binôme de Newton donne $(k+1)^3 = k^3 + 3k^2 + 3k + 1$. On en déduit immédiatement

$$(k+1)^3 - k^3 = 3k^2 + 3k + 1$$

3. Il s'agit de relier les deux premières questions :

D'après la question 2 :

$$\sum_{k=0}^{n} (k+1)^3 - k^3 = \sum_{k=0}^{n} 3k^2 + 3k + 1$$

$$= 3\sum_{k=0}^{n} k^2 + 3\sum_{k=0}^{n} k + \sum_{k=0}^{n} 1$$

$$= 3T_n + 3\frac{n(n+1)}{2} + n + 1$$

et d'après la question 1 :

$$\sum_{k=0}^{n} (k+1)^3 - k^3 = (n+1)^3$$

On a donc bien

$$(n+1)^3 = 3T_n + 3\frac{n(n+1)}{2} + n + 1$$

Il reste à isoler T_n :

$$T_n = \frac{1}{3} \left((n+1)^3 - 3 \frac{n(n+1)}{2} - (n+1) \right)$$

$$= \frac{1}{3} (n+1) \left((n+1)^2 - \frac{3}{2} n - 1 \right)$$

$$= \frac{1}{3} (n+1) \left(n^2 + 2n - \frac{2}{3} n \right)$$

$$= \frac{1}{3} (n+1) n (n+\frac{1}{2})$$

$$= \frac{1}{3} (n(n+1) \frac{2n+1}{2})$$

Et on en déduit

$$T_n = \frac{n(n+1)(2n+1)}{6}$$

On veut montrer la formule suivante :

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n \binom{n}{k} \frac{(-1)^{k+1}}{k} = \sum_{k=1}^n \frac{1}{k}$$

Pour cela, on va passer par une fonction f définie par

$$f: x \mapsto \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^k}{k} x^k$$

Ce qu'on cherche est donc -f(1).

1. Montrez que f est dérivable sur \mathbb{R} et que, pour tout $x \in \mathbb{R}$,

$$f'(x) = \sum_{k=1}^{n} {n \choose k} (-1)^k x^{k-1}$$

2. Soit $x \in \mathbb{R}$. Montrez que

$$\sum_{k=1}^{n} \binom{n}{k} (-1)^k x^k = (1-x)^n - 1$$

3. Soit $x \in \mathbb{R}^*$ Montrez que

$$\sum_{p=0}^{n-1} (1-x)^p = \frac{1-(1-x)^n}{x}$$

4. En déduire que

$$f'(x) = -\sum_{n=0}^{n-1} (1-x)^p$$

5. En intégrant l'égalité précédente entre des bornes bien choisies, retrouvez la formule proposée en début d'exercice..

1. f est dérivable en tant que somme de fonction dérivable, et par linéarité de la dérivation,

$$f'(x) = \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^k}{k} k x^{k-1}$$
$$= \sum_{k=1}^{n} \binom{n}{k} (-1)^k x^{k-1}$$

2. Il s'agit de reconnaitre un binôme de Newton, mais avec le premier terme manquant :

$$\sum_{k=1}^{n} \binom{n}{k} (-1)^k x^k = \sum_{k=0}^{n} \binom{n}{k} (-1)^k x^k - \binom{n}{0} (-1)^0 x^0$$
$$= \sum_{k=0}^{n} \binom{n}{k} (-1x)^k 1^{n-k} - 1$$
$$= (1-x)^n - 1$$

3. Comme $x \in \mathbb{R}^*$, $(1-x) \neq 1$ et on reconnait alors la somme géométrique :

$$\sum_{p=0}^{n-1} (1-x)^p = \frac{1-(1-x)^n}{1-(1-x)} = \frac{1-(1-x)^n}{x}$$

4. La question peut sembler évidente une fois qu'on a vu le lien entre les 3 questions précédentes, mais il y a une petite subtilité : on ne peut pas diviser par x comme on veut...

Si
$$x = 0$$
, alors $f'(0) = \binom{n}{1}(-1)^10^0 = -n$ d'une part (avec la formule obtenue en 1.)

et
$$-\sum_{n=0}^{n-1} (1-0)^p = -\sum_{n=0}^{n-1} 1 = -n$$
, donc la formule est valable pour $x = 0$.

Pour $x = \neq 0$, il suffit maintenant de diviser l'égalité obtenue en 2 par x pour obtenir

$$\frac{\sum_{k=1}^{n} \binom{n}{k} (-1)^k x^k}{x} = \frac{(1-x)^n - 1}{x}$$

d'où

$$\sum_{k=1}^{n} \binom{n}{k} (-1)^k x^{k-1} = \frac{(1-x)^n - 1}{x}$$

c'est à dire
$$f'(x) = \frac{(1-x)^n - 1}{x}$$

C'est l'opposé de ce qu'on a obtenu à la question 3, d'où

$$f'(x) = -\sum_{k=1}^{n-1} (1-x)^p$$

5. Intégrons entre 0 et 1, on obtient, par linéarité de l'intégrale :

$$\int_0^1 f'(x)dx = -\sum_{p=0}^{n-1} \int_0^1 (1-x)^p dx$$

Or
$$\int_0^1 (1-x)^p = \left[-\frac{1}{p}(1-x)^{p+1}\right]_0^1 = -\frac{1}{p+1}(0^{p+1}-1^{p+1}) = \frac{1}{p}$$

et $\int_0^1 f'(x)dx = f(1) - f(0) = f(1)$ car $f(0) = 0$.

Ainsi,
$$f(1) = -\sum_{p=0} n - 1 \frac{1}{p+1}$$

Finalement, en posant k = p + 1 dans la somme et en prenant l'opposé de tout ça, on obtient :

$$\sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{k+1}}{k} = \sum_{k=1}^{n} \frac{1}{k}$$