Topologie

Dans ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et $(E, \| \|)$ et $(F, \| \|)$ désignent des \mathbb{K} -espaces vectoriels normés.

I Limite

I. A Limite

Définition 1.1

Soit E et F deux espaces vectoriels normés, A une partie de E et f une application de A dans F.

Soit a un point adhérent à A et $\ell \in F$. On dit que f tend vers ℓ en a lorsque :

$$\forall \varepsilon > 0, \exists \eta > 0 \mid \forall x \in A, ||x - a|| \leqslant \eta \Rightarrow ||f(x) - \ell|| \leqslant \varepsilon.$$

Remarques 1.2: • On dit que f(x) tend vers ℓ quand ||x|| tend vers $+\infty$ lorsque:

$$\forall \varepsilon > 0, \exists M \in \mathbb{R}^+ \mid \forall x \in A, ||x|| \geqslant M \Rightarrow ||f(x) - \ell|| \leqslant \varepsilon.$$

• Si A est une partie de \mathbb{R} , on dit que f(x) tend vers ℓ quand x tend vers $+\infty$ lorsque:

$$\forall \varepsilon > 0, \exists M \in \mathbb{R}^+ \mid \forall x \in A, x \geqslant M \Rightarrow ||f(x) - \ell|| \leqslant \varepsilon.$$

Définition similaire pour f(x) tend vers ℓ quand x tend vers $-\infty$.

• Si $f:A\longrightarrow \mathbb{R}$, on dit que f(x) tend vers $+\infty$ quand x tend vers a lorsque :

$$\forall M \in \mathbb{R}, \exists \eta > 0 \mid \forall x \in A, ||x - a|| \leqslant \eta \Rightarrow f(x) \geqslant M.$$

Définition similaire pour f(x) tend vers $-\infty$ quand x tend vers a.

Théorème 1.3 (Unicité de la limite)

Si une application $f:A\longrightarrow F$ a une limite ℓ en $a\in\overline{A}$, alors cette limite est unique, elle est notée : $\lim_{x\to a}f(x)$.

Théorème 1.4 (caractérisation séquentielle de la limite)

Soit E, F des espaces vectoriels normés, $f: A \longrightarrow F, a \in \overline{A}$ et $\ell \in F$.

- La fonction f tend vers ℓ en a si et seulement si pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers a, la suite $(f(x_n))_{n\in\mathbb{N}}$ converge vers ℓ .
- La fonction f a une limite en a si et seulement si pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers a, la suite $(f(x_n))_{n\in\mathbb{N}}$ converge.

Remarque 1.5 : Si N_1 et N_2 sont des normes équivalentes sur E, et N_3, N_4 sont des normes équivalentes sur F, alors :

$$f(x) \xrightarrow[x \to a, N_1]{N_3} \ell \Leftrightarrow f(x) \xrightarrow[x \to a, N_2]{N_4} \ell$$

Contre exemple 1.6 : Pour des normes non équivalentes.

Pour $E = \mathcal{C}([0;1],\mathbb{R})$ l'application $\varphi : E \longrightarrow \mathbb{R}, f \mapsto f(1)$ d'évaluation en 1.

$$\varphi(f) \xrightarrow[f \to 0_{\mathcal{F}}, \| \ \|_{\infty}]{} 0 \text{ et } \varphi(f) \xrightarrow[f \to 0_{\mathcal{F}}, \| \ \|_{1}]{} 0.$$

Théorème 1.7 (limite dans un EVN produit)

Soit E un espace vectoriel normé, A une partie de E, $F = \prod_{i=1}^{p} F_i$ un espace vectoriel normé produit et $f: A \longrightarrow F$. Alors, $\forall x \in A, f(x) = (f_1(x), \dots, f_p(x))$ avec $\forall i \in [1; p], f_i: A \longrightarrow F_i$ et pour $\ell = (\ell_1, \dots, \ell_p) \in F$ avec $\forall i \in [1; p], \ell_i \in F_i$,

$$f(x) \xrightarrow[x \to a]{\parallel \parallel_{F}} \ell \Leftrightarrow \forall i \in [[1;p]], f_i(x) \xrightarrow[x \to a]{\parallel \parallel_{F_i}} \ell_i.$$

I. B Opérations sur les limites

Proposition 1.8 (combinaison linéaire)

Soit $f,g:A\longrightarrow F,\,\alpha\in\mathbb{K},a\in\overline{A}$ et $\ell,\ell'\in F.$

Si $\lim_a f = \ell$ et $\lim_a g = \ell'$,

alors: $\lim_a (f+g) = \ell + \ell'$ et $\lim_a \alpha f = \alpha \ell$.

Proposition 1.9 (multiplication par une limite scalaire)

Soit $f: A \longrightarrow F, u: A \longrightarrow \mathbb{K}, \ell \in F$ et $\alpha \in \mathbb{K}$.

Si $\lim_a f = \ell$ et $\lim_a u = \alpha$,

alors $\lim_a uf = \alpha \ell$.

Proposition 1.10 (composée)

Soit E, F, G des espaces vectoriels normés, $A \subset E, B \subset F$, $f: A \longrightarrow B$, $g: B \longrightarrow G$, $a \in \overline{A}, b \in \overline{B}, c \in G$.

Si $\lim_a f = b$ et $\lim_b g = c$,

alors $\lim_a g \circ f = c$.

II Continuité

II. A Continuité en un point

Proposition 2.1

Soit $f: A \longrightarrow F$ et $a \in A$.

Si f a une limite en a, alors : $\lim_a f = f(a)$.

(Définition 2.2)

Soit $f:A\longrightarrow F$ et $a\in A$, on dit que f est **continue en** a lorsque f admet une limite en a.

Remarque 2.3 : Si deux normes sont équivalentes, alors elles définissent les mêmes limites et donc les mêmes fonctions continues. Mais ce n'est pas le cas pour des normes qui ne sont pas équivalentes.

Proposition 2.4

- Une somme de fonctions continues en a est continue en a;
- Le produit d'une fonction continue en a et d'une fonction à valeurs dans \mathbb{K} continue en a est continue en a;
- l'ensemble des fonctions de A dans F continues en a et un \mathbb{K} -espace vectoriel.
- si $f:A\longrightarrow B$ est continue en $a\in A$ et $g:B\longrightarrow C$ est continue en f(a), alors $g\circ f$ est continue en a.

$egin{array}{c} ext{Proposition 2.5 (caractérisation séquentielle)} \end{array}$

Soit $f : A \longrightarrow F$ et $a \in A$.

La fonction f est continue en a si et seulement si pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers a, la suite $(f(x_n))_{n\in\mathbb{N}}$ converge. Et dans ce cas $(f(x_n))_{n\in\mathbb{N}}$ converge vers f(a).

Proposition 2.6

Soit A, B des parties de $E, a, f: A \longrightarrow F$ et $g: B \longrightarrow F$.

Si g est continue en a et s'il existe V un voisinage relatif de a dans A tel que f=g sur V, alors f est continue en a.

II. B Applications continues

(Définition 2.7)

Soit E, F des espaces vectoriels normés, A une partie de $E, f: A \longrightarrow F$ et B une partie de A.

On dit que f est continue sur B lorsque f est continue en tout point de B.

- Remarques 2.8 : Il n'y a pas de consensus sur la définition de continuité sur B : autre définition : f continue sur B lorsque sa restriction à B est continue en tout point de B; la fonction partie entière est alors continue sur [0;1[.
 - Une combinaison linéaire de fonctions continues est continue.
 - Une composée de fonctions continues est continue.

Proposition 2.9

Soit E un espace vectoriel normé, A une partie de E, $F = \prod_{i=1}^n F_i$ un espace vectoriel normé produit et $f: A \longrightarrow F$. Alors, $\forall x \in A, f(x) = (f_1(x), \dots, f_n(x))$ avec $\forall i \in [1; n], f_i: A \longrightarrow F_i$ et f est continue sur A ssi : $\forall i \in [1; n], f_i$ est continue sur A.

$(Th\'{e}or\`{e}me~2.10)$

Soit E, F des espaces vectoriels normés, A une partie de E et $f: A \longrightarrow F$. Si f est continue (sur A), alors :

- l'image réciproque d'un ouvert de F par f est un ouvert relatif de A;
- l'image réciproque d'un fermé de F par f est un fermé relatif de A.

Méthode 2.11

Ce théorème permet de montrer très facilement qu'une partie est un ouvert ou un fermé.

Exemples 2.12: • $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 < z\}$ est un _____ de \mathbb{R}^3 .

- $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z\}$ est un ______ de \mathbb{R}^3 .
- si $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$, alors sont graphe $\{(x, f(x)); \text{ avec } x \in \mathbb{R}\}$ est fermé.
- $GL_n(\mathbb{K})$ est un de $\mathcal{M}_n(\mathbb{K})$.

Proposition 2.13

Soit E,F des espaces vectoriels normés, A une partie de $E,\,f,g$ des applications de A dans F. Si :

- f et g sont continues sur A;
- f et g coïncident sur B: $\forall x \in B, f(x) = g(x)$;
- B est dense dans A;

alors : f = g.

Exemple 2.14: Déterminer les endomorphimes continus du groupe $(\mathbb{R}, +)$.

Continuité uniforme II. C

Définition 2.15

Soit E, F des espaces vectoriels normés. Une application f définie d'une partie Ade E dans F est dite uniformément continue sur A lorsque :

$$\forall \varepsilon > 0, \exists \eta > 0 \mid \forall x, y \in A, ||x - y|| \leqslant \eta \implies ||f(x) - f(y)|| \leqslant \varepsilon.$$

Proposition 2.16

Si une application est uniformément continue sur A, alors elle est continue sur A.

Remarque 2.17: La réciproque est fausse, contre exemple : est continue sur \mathbb{R} , mais n'est pas uniformément continue sur \mathbb{R} .

Définition 2.18

Soit E, F des espaces vectoriels normés et $k \in \mathbb{R}^+$. Une application f d'une partie A de E dans F est dite k-lipschitzienne sur A lorsque :

$$\forall x, y \in A, ||f(x) - f(y)|| \le k \times ||x - y||.$$

Vocabulaire: On que f est lipschitzienne sur A lorsqu'il existe $k \in \mathbb{R}^+$ tel que f est k-lipschitzienne sur A.

Proposition 2.19

Toute fonction lipschitzienne sur A est uniformément continue sur A.

Exemples 2.20: $x \mapsto ||x||$ est 1-lipschitzienne de (E, || ||) dans $(\mathbb{R}, |.|)$.

Remarque 2.21: La réciproque est fausse, contre exemple : est uniformément continue sur [0;1] mais pas lipschitzienne sur [0;1].

Proposition 2.22

• $E = \prod_{i=1}^n E_i$ un espace vectoriel normé produit. Alors : $\forall i \in [1; n], p_i : (x_1, \dots, x_n) \mapsto x_i$ est 1-lipschitzienne.

• Toute fonction polynomiale de $(\mathbb{K}^n, \| \cdot \|_{\infty})$ dans \mathbb{K} est continue.

Proposition 2.23

Soit E un espace vectoriel normé et A une partie non vide de E. L'application $x \mapsto d(x, A)$ est 1-lipschitzienne sur E.

Application linéaires continues

III. A Caractérisation des applications linéaires continues

Théorème 3.1

Soit E et F des espaces vectoriels normés et $u \in \mathcal{L}(E,F)$. Sont équivalents :

- u est continue sur E;
- u est continue en 0_E ;
- u est bornée sur la boule unité fermée;
- $\exists C \in \mathbb{R}^+ \mid \forall x \in E, ||u(x)|| \leq C ||x||;$
- u est lipschitzienne sur E.

Notation: L'ensemble des application linéaires continues de E dans F est un \mathbb{K} espace vectoriel noté $\mathcal{L}_c(E,F)$.

Exemples 3.2: • Pour $E = \mathcal{C}([a;b],\mathbb{R})$ et $\varphi : f \mapsto \int_a^b f(t) \, dt$, φ est continue pour les normes $\| \|_1, \| \|_2, \| \|_{\infty}$.

• Pour $E = l^1(\mathbb{C}) = \{u = (u_n)_{n \in \mathbb{N}} \in \mathbb{C}^n \mid \sum |u_n| \text{ converge } \} \text{ et } \varphi : u \mapsto \sum_{n=0}^{+\infty} u_n.$ L'application φ est continue pour la norme $\| \|_1$ définie par $\|u\| = \sum_{n=0}^{+\infty} |u_n|$ mais pas pour la norme $\| \|_{\infty}$ définie par $\|u\|_{\infty} = \sup_{n} |u_n|$.

Normes subordonnées

Définition/Théorème 3.3

Soit E, F des espaces vectoriels normés. On appelle norme subordonnée aux normes de E et F ou norme d'opérateur la norme sur $\mathcal{L}_c(E,F)$ définie par :

$$||u|| = \sup_{x \in E, ||x|| \le 1} ||u(x)||.$$

Notation : Une norme d'opérateur est notée $\| \|_{op}$ ou $\| \|$

Proposition 3.4

Soit $u \in \mathcal{L}_c(E, F)$ avec E, F des espaces vectoriels normés, alors :

$$|\!|\!|\!| u |\!|\!| = \sup_{x \in E \smallsetminus \{0\}} \frac{\|u(x)\|}{\|x\|} \quad \text{ et } \quad \forall x \in E, \|u(x)\|_F \leqslant |\!|\!|\!| u |\!|\!|\!| \times \|x\|_E \,.$$

Proposition 3.5

Soit E, F, F des espaces vectoriels normés, on munit $\mathcal{L}_c(E, F)$ de la norme subordonnées aux normes de E et F et $\mathcal{L}_c(F, G)$ de la norme subordonnées aux normes de F et G.

Soit $u \in \mathcal{L}_c(E, F)$ et $v \in \mathcal{L}_c(F, G)$, alors :

$$||v \circ u|| \leq ||v|| \times ||u||.$$

- Remarque 3.6 : On définit de même des normes d'opérateur sur les espaces $\mathcal{M}_{n,p}(\mathbb{K})$ en considérant les applications linéaires canoniquement associées.
- **Exemples 3.7 :** Déterminer l'expression des normes d'opérateurs sur $\mathcal{M}_{1,2}(\mathbb{R})$ pour chacune des normes usuelles sur \mathbb{R}^2 .

III. C Applications multilinéaires

Proposition 3.8

Soit E, F, G des espaces vectoriels normés et φ une application bilinéaire de $E \times F$ dans G. L'application φ est continue sur $E \times F$ si et seulement si :

$$\exists C \in \mathbb{R}^+ \mid \forall (x,y) \in E \times F, \|\varphi(x,y)\| \leqslant C \|x\| \times \|y\|.$$

- **Exemples 3.9 :** L'application $\mathbb{K} \times E \longrightarrow E, (\lambda, x) \mapsto \lambda \cdot x$ est bilinéaire continue.
 - On considère $\mathcal{M}_n(\mathbb{K})$ muni d'une norme d'opérateur. Alors la multiplication matricielle $\mathcal{M}_n(\mathbb{K})^2 \longrightarrow \mathcal{M}_n(\mathbb{K})$ est bilinéaire continue.
 - Si E est un espace pré-hilbertien, $(x,y) \in E^2 \mapsto \langle x,y \rangle \in \mathbb{R}$ est continue.

Proposition 3.10

Soit $E = \prod_{i=1}^{n} E_i$ un espace vectoriel normé produit, F un espace vectoriel normé et φ une application n-linéaire de E dans F.

L'application φ est continue sur E si et seulement si :

$$\exists C \in \mathbb{R}^+ \mid \forall x = (x_1, \dots, x_n) \in E, \|\varphi(x)\| \leqslant C \|x_1\| \dots \|x_n\|.$$

IV Compacité

IV. A Parties compactes

Définition 4.1

Soit E un espace vectoriel normé. Une partie A de E est dite **compacte** lorsque toute suite d'éléments de A a au moins une valeur d'adhérence dans A.

- **Remarque 4.2 :** A est compacte si et seulement si de toute suite d'éléments de A on peut extraire une suite qui converge dans A.
- **Exemples 4.3:** Dans \mathbb{R} : tout segment [a;b] est compact,]0;1[n'est pas compact, \mathbb{R} n'est pas compact.

Proposition 4.4

Une partie compacte d'un espace vectoriel normé est fermée et bornée.

Attention: Réciproque fausse!

Contre exemple 4.5 : $E = \mathbb{K}[X]$ muni de la norme définie par $\left\| \sum_{i=0}^{n} a_i X_i \right\| = \max_{i \in [0:n]} |a_i|, \text{ la boule unité fermée n'est pas compacte : } (X^n)_{n \in \mathbb{N}} \text{ n'a pas de valeur d'adhérence.}$

Proposition 4.6

Un fermé relatif d'une partie compacte est compact.

Proposition 4.7

Une suite d'éléments d'une partie compacte converge si et seulement si elle admet une unique valeur d'adhérence.

(Proposition 4.8)

Un produit fini de compacts est compact.

- **Exemple 4.9:** Toute partie de la forme $\prod_{i=1}^{n} [a_i; b_i]$ est compact dans $(\mathbb{R}^n, \| \|_{\infty})$.
 - Toute partie fermée bornée est compacte dans \mathbb{R}^n muni de la norme $\| \ \|_{\infty}$.
 - Toute partie fermée bornée est compacte dans \mathbb{C}^n muni de la norme $\|\ \|_{\infty}.$

IV. B Compacité et continuité

Théorème 4.10 (image continue d'un compact)

Soit E, F des espaces vectoriels normés et f une application d'une partie A de E dans F.

Si f est continue sur A, alors l'image de tout compact inclus dans A par f est une partie compacte de F.

Théorème 4.11 (des bornes atteintes)

Toute fonction à valeurs réelles continue sur un compact non vide est bornée et atteint ses bornes.

Méthode 4.12

Ce théorème permet de montrer l'existence d'un problème d'optimisation (recherche d'extrema).

Exemples 4.13 : Soit A un compact de non vide de E et $x \in E$

- distance d'un point à un compact : $\exists a \in A \mid d(x, A) = d(x, a)$.
- diamètre d'un compact : $\exists a, b \in A \mid d(a, b) = \text{diam}(A)$.

Théorème 4.14 (Heine)

Toute application continue sur un compact est uniformément continue.

Application : densité des fonctions en escalier dans l'ensemble des fonctions continues par morceaux pour la norme de la convergence uniforme et définition de l'intégrale des fonctions continues par morceaux.

V Espaces vectoriels normés de dimension finie

V. A Équivalence des normes en dimension finie

Théorème 5.1

Dans un espace vectoriel normé de dimension finie, toutes les normes sont équivalentes.

Remarque 5.2 : Il y a donc une unique topologie de norme sur un espace vectoriel normé de dimension finie, i.e. : quelque soit la norme choisie, on a les mêmes ouverts, fermés, limites , continuité, compacité etc.

En dimension finie, on peut donc choisir la norme que l'on veut pour montrer une propriété topologique d'un ensemble, d'une suite ou d'une fonction.

Attention : Si E est un espace vectoriel de dimension finie muni de deux normes N_1 et N_2 . Une partie A de E est bornée pour N_1 si et seulement si elle est bornée pour N_2 , mais pas nécessairement avec la même borne.

De même, une application de E dans E est lipschitizienne pour N_1 si et seulement si elle l'est pour N_2 , mais pas avec le même coefficient.

Proposition 5.3

La convergence d'une suite (ou l'existence de la limite d'une fonction) à valeurs dans un espace vectoriel de dimension finie équivaut à celle de chacune de ses coordonnées dans une base.

V. B Compacité en dimension finie

Théorème 5.4

Une partie d'un espace vectoriel normé de dimension finie est compacte si et seulement si elle est fermée et bornée.

Remarque 5.5 : Dans ($\mathbb{K}[X], \| \|$) avec $\| \sum a_k X^k \| = \max |a_k|$, la boule unité fermée n'est pas compact (cf exemple 4.5).

Proposition 5.6

Une suite d'un espace vectoriel normé de dimension finie converge si et seulement si elle est bornée et a une unique valeur d'adhérence.

V. C Sous-espaces de dimension finie

(Théorème 5.7)

Tout sous-espace vectoriel de dimension finie d'un espace vectoriel normé (de dimension quelconque) est fermé.

Remarque 5.8: Le sous-espace des fonctions en escalier dans l'espace des fonctions continues par morceaux sur [0;1] dans \mathbb{R} muni de la norme de la convergence uniforme fournit un contre exemple en dimension infinie.

V. D Continuité

Théorème 5.9

Soit E, F des espaces vectoriels normés avec F de dimension finie muni d'une base $\mathcal{B} = (e_1, \dots, e_n)$ et $f: E \longrightarrow F$.

On note f_1, \ldots, f_n les fonctions coordonnées de f dans \mathcal{B} , c'est à dire les fonctions

à valeurs dans \mathbb{K} telles que : $\forall x \in E, f(x) = \sum_{k=1}^{n} f_k(x)e_k$.

Alors f est continue en $x \in E$ (respectivement sur $A \subset E$) si et seulement si chaque fonction cordonnée f_k est continue en x (respectivement sur A).

$ig(ext{Th\'eor\`eme } 5.10 ig)$

Soit E, F des espaces vectoriels normés.

Si E est de dimension finie, alors toute application linéaire de E dans F est continue.

Remarques 5.11: • Si E est de dimension finie, $\mathcal{L}(E,F) = \mathcal{L}_C(E,F)$.

• Dans $\mathbb{R}[X]$ muni de la norme définie par $\left\|\sum_{k=0}^{+\infty} a_k X^k\right\| = \sup_{k \in \mathbb{N}} |a_k|$, l'endomorphisme $f: P \mapsto P'$ n'est pas continu $(\forall n \in \mathbb{N}, \|X^n\| = 1 \text{ et } \|u(X^n)\| = n)$.

Théorème 5.12

Toute application multilinéaire définie sur un produit d'espaces vectoriels normés de dimensions finies est continue.

Exemples 5.13 : • Le produit matriciel $\mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,q}(\mathbb{K}) \longrightarrow \mathcal{M}_{n,q}(\mathbb{K}),$ $(M,N) \mapsto M \times N$ est continu.

• Soit E un \mathbb{K} -espace vectoriel de dimension n et \mathcal{B} une base de E, le déterminant $E^n \longrightarrow \mathbb{K}, (x_1, \ldots, x_n) \mapsto \det_{\mathcal{B}}(x_1, \ldots, x_n)$ est continu.

Théorème 5.14

Soit E un espace vectoriel normé de dimension finie et $\mathcal B$ une base de E. Toute application de E dans $\mathbb K$ polynomiale en les coordonnées dans la base $\mathcal B$ est continue.

Exemple 5.15: Le déterminant matriciel $\mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}, M \mapsto \det(M)$ est continu.

VI Connexité par arcs

Définition 6.1

Soit E un espace vectoriel normé, A une partie de E et $x, y \in A$. On appelle **chemin (ou arc) joignant** x **et** y **dans** A toute application γ continue de [0;1] dans A telle que $\gamma(0)=x$ et $\gamma(1)=y$.

Proposition 6.2

Soit E un espace vectoriel normé et A une partie de E.

La relation définie sur A par :

 $x\mathcal{R}y \Leftrightarrow \text{il existe un chemin joignant } x \text{ et } y \text{ dans } A$

est une relation d'équivalence.

Ses classes sont appelées les composantes connexes par arcs de A.

Définition 6.3

Une partie A de E est dite **connexe par arcs** lorsqu'elle a une unique composante connexe, c'est à dire lorsque pour tous $x, y \in A$ il existe un chemin joignant x et y dans A.

Proposition 6.4

Toute partie convexe d'un espace vectoriel normé est connexe par arcs.

Définition 6.5

Une partie A d'un espace vectoriel normé E est dite **étoilée** lorsqu'il existe un point $a \in A$ tel que pour tout $x \in A$, le segment [x;a] est inclus dans A.

Exemples 6.6: • Les convexes sont étoilés.

• Représentation de parties étoilées non convexes dans le plan.

Proposition 6.7

Toute partie étoilée d'un espace vectoriel normé est connexe par arcs.

Proposition 6.8

Les parties connexes par arcs de \mathbb{R} sont les intervalles.

(Théorème 6.9)

L'image par une fonction continue d'une partie connexe par arcs est connexe par arcs.

Théorème 6.10 (des valeurs intermédiaires)

Soit E un espace vectoriel normé, A une partie connexe par arcs de E, f une application continue de A dans \mathbb{R} , $x, y \in A$.

Alors pour tout α compris entre f(x) et f(y), il existe $z \in A$ tel que $f(z) = \alpha$.

Application : Soit I un intervalle de \mathbb{R} et f une fonction continue et injective de I dans \mathbb{R} . On veut montrer que f est strictement monotone sur I. Pour cela on considère $g: I^2 \longrightarrow \mathbb{R}, (x,y) \mapsto f(y) - f(x)$ et $C = \{(x,y) \in I^2 \mid x < y\}$.