Les notions d'atomistique de PCSI et du chapitre MQ1 restent exigibles pour traiter les exercices.

CHAPITRE MQ2 : ORBITALES MOLÉCULAIRES (Question de cours et exercices, ce chapitre n'a pas encore été évalué pour ceux qui ont colle cette semaine)

- I. NOTION D'ORBITALE MOLÉCULAIRE
- II. PRINCIPE DE CONSTRUCTION DES OM SUR UN EXEMPLE SIMPLE : LES MOLÉCULES DIATOMIQUES HOMONUCLÉAIRES DE LA PREMIÈRE PÉRIODE
- III. APPLICATION AUX MOLÉCULES DIATOMIQUES HOMONUCLÉAIRES DE LA DEUXIÈME PÉRIODE
- IV. APPLICATION AUX MOLÉCULES DIATOMIQUES HÉTÉRONUCLÉAIRES : EXEMPLE DE HF
- V. APPLICATION AUX MOLÉCULES COMPLEXES: MÉTHODE DES ORBITALES DE FRAGMENTS (ex. de BeH2)
- VI. POUR ALLER PLUS LOIN: INTERACTION À TROIS ORBITALES (ex. de LiH)

RÉVISIONS PCSI : GENERALITES (cf liste page 2), SUBSTITUTIONS NUCLÉOPHILES S_N2 ET S_N1, ÉLIMINATIONS E2, ADDITIONS NUCLÉOPHILES A_N D'ORGANOMAGNÉSIENS

CHAPITRE TC4 : APPLICATIONS DU SECOND PRINCIPE DE LA THERMODYNAMIQUE (Question de cours uniquement)

- I. DEUXIÈME ET TROISIÈME PRINCIPES DE LA THERMODYNAMIQUE
 - 1. Deuxième principe de la thermodynamique
 - 2. Troisième principe de la thermodynamique : principe de Nernst
- II. IDENTITÉS THERMODYNAMIQUES
 - 1. Première identité thermodynamique
 - 2. Deuxième identité thermodynamique
 - 3. Caractère intensif ou extensif des variables utilisées
- II. L'ENTHALPIE LIBRE
 - 1. Transformation monotherme et monobare
 - 2. Critère d'évolution et d'équilibre
 - 3. Identité thermodynamique
- III. LE POTENTIEL CHIMIQUE
 - 1. Définition
 - 2. Influence de la pression sur le potentiel chimique
 - 3. Expressions du potentiel chimique
- IV. APPLICATIONS DU POTENTIEL CHIMIQUE (pas fini)
 - 1. Mélange en réaction
 - 2. Changement de phase d'un corps pur
 - 3. Osmose

Remarque : Les grandeurs de réaction, les relations entre celles-ci, l'influence de T, K°, l'évolution d'un système chimique.... Feront l'objet du chapitre TC5.

Révisions	Compétences exigibles	
Chapitre MQ2 : Orbitales moléculaires		
	Connaître l'approximation de Born-Oppenheimer, l'approximation orbitalaire et le principe de la méthode CLAO.	
	Connaître les conditions d'interaction de deux orbitales (critère énergétique et recouvrement).	
	Définir les notions d'orbitale moléculaire, recouvrement liant et antiliant, orbitales σ et π .	
	Construire et représenter de manière conventionnelle les OM issues de l'interaction de deux OA sur deux centres et dresser le diagramme d'interaction.	
	Reconnaître le caractère liant, antiliant, σ ou π d'une orbitale.	
	Etablir le diagramme d'OM non corrélé d'une molécule diatomique homonucléaire de la première ou de la deuxième période et en déduire sa configuration électronique.	
	Commenter le diagramme d'OM de molécules diatomiques (indice de liaison, propriétés magnétiques).	
	Interpréter un diagramme d'orbitales moléculaires obtenus par interaction des orbitales de deux fragments.	
Chapitre	Chapitre TC4 : Applications du second principe de la thermodynamique	
	Exprimer le potentiel chimique d'un constituant physico-chimique, et l'enthalpie libre d'un système en fonction des potentiels chimiques.	
	Déterminer une variation d'enthalpie libre, d'enthalpie et d'entropie entre deux états du système chimique.	
	Utiliser le potentiel chimique pour prévoir l'évolution ou l'équilibre d'un système contenant une espèce chimique dans plusieurs phases.	
	Utiliser le potentiel chimique pour interpréter le transfert d'un solvant au travers d'une membrane, et relier la pression osmotique à la différence de potentiel chimique du solvant dans les deux phases.	
Révisions	Révisions PCSI : Généralités	
	Représenter une molécule simple à partir de son nom en tenant compte d'éventuelles informations stéréochimiques et inversement déterminer le stéréodescripteur d'une molécule donnée.	
	Trouver tous les stéréoisomères de configuration d'une molécule.	
	Effectuer l'analyse conformationnelle d'une molécule non cyclique et comparer la stabilité de plusieurs conformations.	
	Interpréter les spectres IR et RMN d'une molécule.	
	Etablir ou confirmer une structure à partir de données spectroscopiques.	
	Relier la valeur du pouvoir rotatoire d'un mélange de stéréoisomères à sa composition.	
	Etudier les effets électroniques au sein d'une molécule et en déduire sa réactivité.	
Révisions PCSI : Substitutions nucléophiles et éliminations		
	Déterminer les produits issus de réactions de type S_N1 , S_N2 ou $E2$ en tenant compte de la régiosélectivité et de la stéréosélectivité et proposer un mécanisme.	
	Exprimer la loi de vitesse de telles réactions et représenter leur profil réactionnel.	
	Etudier l'influence de différents paramètres sur leur vitesse.	
	Prévoir la nature de la réaction et son mécanisme à l'aide des conditions expérimentales et des données de l'énoncé.	

Révisions PCSI : Additions nucléophiles sur la double liaison C=O	
	Interpréter la polarité des liaisons carbone-métal.
	Décrire la préparation d'un organomagnésien mixte en précisant les précautions à prendre et les réactions indésirables.
	Déterminer le produit issu de la réaction d'un organomagnésien sur un aldéhyde, une cétone, le dioxyde de carbone et proposer un mécanisme.
	Concevoir une stratégie de synthèse pour une molécule simple.