ÉTUDE D'UNE SUITE OU D'UNE SÉRIE DE FONCTIONS

I. ÉTUDE DE LA CONVERGENCE D'UNE SUITE DE FONCTIONS

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I non vide et à valeurs dans \mathbb{K} (\mathbb{R} ou \mathbb{C}).

1. Étude de la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$

On fixe $x \in I$ et on étudie la convergence de la suite numérique $(f_n(x))_{n \in \mathbb{N}}$. Si cette suite converge alors on note f(x) sa limite. Notons qu'il est possible d'avoir à considérer des cas suivant la valeur de x.

Lorsqu'on a montré la convergence de la suite $(f_n(x))_{n\in\mathbb{N}}$ pour tout x appartenant à I, on a alors prouvé que la suite de fontions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers la fonction f.

2. Étude de la convergence uniforme de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$

S'il y a convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$ sur I alors c'est nécessairement vers sa limite simple f.

La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers f si et seulement si $\lim_{n\to+\infty} \|f_n - f\|_{\infty}^I = 0$.

Pour $n \in \mathbb{N}$, on a par définition :

$$||f_n - f||_{\infty}^I = \sup_{x \in I} |f_n(x) - f(x)|$$

(en prenant comme convention que cette quantité vaut $+\infty$ lorsque la fonction $f_n - f$ n'est pas bornée sur I.)

Méthode 1:

On fixe $n \in \mathbb{N}$ (ou on se place éventuellement à partir d'un certain rang) et on détermine explicitement la valeur de $||f_n - f||_{\infty}^I$.

Il ne reste plus qu'à regarder si la suite numérique ($||f_n - f||_{\infty}^{I}$) converge vers 0.

Comment déterminer explicitement $||f_n - f||_{\infty}^{I}$?

* On peut étudier la fonction $\psi_n : x \mapsto |f_n(x) - f(x)| \text{ sur } I.$

Son tableau de variations permet habituellement de conclure.

Si le signe de $f_n(x) - f(x)$ n'est pas connu alors on préférera étudier la fonction $\varphi_n : x \mapsto f_n(x) - f(x)$ et on déduira de cette étude celle de la fonction ψ_n .

* Si pour tout $x \in I$, $|f_n(x) - f(x)| \le u_n$ et u_n est une valeur atteinte (c'est-à-dire $u_n = |f_n(x_n) - f(x_n)|$ pour un certain x_n dans I) alors on a :

$$u_n = \max_{x \in I} |f_n(x) - f(x)| = ||f_n - f||_{\infty}^I.$$

Méthode 2 : (pour montrer qu'il y a convergence uniforme sur I) On montre qu'à partir d'un certain rang, on a $0 \le ||f_n - f||_{\infty}^I \le u_n$ avec $\lim_{n \to +\infty} u_n = 0$. On conclut par le théorème des théorème des gendarmes que $\lim_{n\to+\infty} \|f_n - f\|_{\infty}^I = 0$.

Comment montrer qu'on a $||f_n - f||_{\infty}^I \le u_n$?

On montre que pour tout $x \in I$, on a $|f_n(x) - f(x)| \le u_n$ où u_n ne dépend pas de x.

Ainsi, u_n est un majorant de l'ensemble $\{|f_n(x) - f(x)|, x \in I\}$.

Comme $||f_n - f||_{\infty}^I$ est le plus petit majorant de cet ensemble, on en déduit que $||f_n - f||_{\infty}^I \le u_n$.

Méthode 3 : (pour montrer qu'il n'y a pas convergence uniforme sur *I*)

On trouve une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de I telle que la suite numérique $(f_n(x_n) - f(x_n))_{n\in\mathbb{N}}$ ne tend pas vers 0.

On peut alors en déduire que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur I.

Méthode 4 : (pour montrer qu'il n'y a pas convergence uniforme sur *I*)

Si les fonctions f_n , pour tout $n \in \mathbb{N}$, sont continues sur I alors que la fonction f n'est pas continue sur I alors la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur I.

II. ÉTUDE DE LA CONVERGENCE D'UNE SÉRIE DE FONCTIONS

Soit $\sum f_n$ une série de fonctions où pour tout $n \in \mathbb{N}$, $f_n : I \to \mathbb{K}$.

1. Étude de la convergence simple de la série de fonctions $\sum f_n$

On fixe $x \in I$ et on étudie la convergence de la série numérique $\sum f_n(x)$.

On dispose pour cela de toutes les méthodes vues dans le chapitre Séries numériques.

Notons qu'il est possible d'avoir à considérer des cas suivant la valeur de x.

Lorsqu'on a montré la convergence de la série $\sum f_n(x)$ pour tout x appartenant à I, on a alors prouvé que la série de fonctions $\sum f_n$ converge simplement sur I.

$$x \longmapsto \sum_{k=0}^{+\infty} f_k(x)$$

Dans ce cas, on peut définir la fonction somme $S: \begin{matrix} I & \longrightarrow & \mathbb{K} \\ x & \longmapsto & \sum_{k=0}^{+\infty} f_k(x) \end{matrix}$ et la suite (de fonctions) des restes $(R_n)_{n\in\mathbb{N}}$ où pour tout $n\in\mathbb{N}, R_n: x \longmapsto \sum_{k=n+1}^{+\infty} f_k(x)$.

2. Étude de la convergence uniforme de la série de fonctions $\sum f_n$

La série de fonctions $\sum f_n$ converge uniformément sur I si et seulement si elle converge simplement sur I et la suite (de fonctions) des restes $(R_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction nulle.

Méthode 1 : (pour montrer qu'il y a convergence uniforme sur *I*)

On montre que la série de fonctions $\sum f_n$ converge normalement sur I.

La convergence normale impliquant la convergence uniforme, on en déduit que la série de fonctions $\sum f_n$ converge uniformément sur I.

Méthode 2 : (pour montrer qu'il y a convergence uniforme sur *I*)

On prouve la convergence simple sur I de la série de fonctions $\sum f_n$.

On montre que la suite des restes $(R_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction $\varphi: x \mapsto 0$.

On peut pour cela utiliser la méthode 2. du paragraphe I.

On y pensera notamment lorsque la série $\sum f_n(x)$ est une série alternée pour tout $x \in I$.

Pour $x \in I$ fixé, le critère spécial des séries alternées permet, après vérification des hypothèses, d'obtenir une majoration du reste :

$$\forall n \in \mathbb{N}, |R_n(x) - \varphi(x)| = |R_n(x)| \le |f_{n+1}(x)|.$$

Il reste à majorer $|f_{n+1}(x)|$ par une quantité u_n ne dépendant pas de x et tendant vers 0 pour pouvoir appliquer la méthode.

Méthode 3 : (pour montrer qu'il n'y a pas convergence uniforme sur *I*)

On montre que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur I vers la fonction nulle par la méthode 1 ou la méthode 3 du paragraphe I.

On peut alors en déduire que la série de fonctions $\sum f_n$ ne converge pas uniformément sur I.

Méthode 4 : (pour montrer qu'il n'y a pas convergence uniforme sur *I*)

On montre que la suite des restes $(R_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur I vers la fonction $\varphi: x \mapsto 0$. On peut pour cela utiliser la méthode 3 du paragraphe I : on trouve une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de I telle que la suite numérique $(R_n(x_n) - \varphi(x_n))_{n \in \mathbb{N}}$ ne tend pas vers 0. Pour cela, on pourra penser à encadrer $R_n(x)$ par des intégrales (par une comparaison série/intégrale),

plus facilement calculables qu'une somme.

3. Étude de la convergence normale de la série de fonctions $\sum f_n$

Par définition, la série de fonctions $\sum_{n\geq 0} f_n$ converge normalement sur I lorsque la série numérique $\sum_{n>0} \|f_n\|_{\infty}^I \text{ converge.}$

Méthode 1:

On fixe $n \in \mathbb{N}$ et on détermine explicitement la valeur de $||f_n||_{\infty}^I$ (qui peut valoir $+\infty$ par convention lorsque la fonction f_n n'est pas bornée sur I).

S'il y a au moins une fonction f_n non bornée sur I alors la série ne converge pas normalement sur I. Sinon, il ne reste plus qu'à regarder si la série numérique $\sum_{n\geq 0} \|f_n\|_{\infty}^I$ converge.

Comment déterminer explicitement $||f_n||_{\infty}^{I}$?

* On peut étudier la fonction $\psi_n : x \mapsto |f_n(x)| \text{ sur } I.$

Son tableau de variations permet habituellement de conclure.

Si le signe de $f_n(x)$ n'est pas connu alors on préférera étudier la fonction f_n et on déduira de cette étude celle de la fonction ψ_n .

* Si pour tout $x \in I$, $|f_n(x)| \leq u_n$ et u_n est une valeur atteinte (c'est-à-dire $u_n = |f_n(x_n)|$ pour un certain x_n dans I) alors on a :

$$u_n = \max_{x \in I} |f_n(x)| = ||f_n||_{\infty}^I.$$

Méthode 2 : (pour montrer qu'il y a convergence normale sur I)

On montre que pour tout $n \in \mathbb{N}$, on a $0 \le ||f_n||_{\infty}^{I} \le u_n$ où $\sum u_n$ est une série numérique convergente. On conclut par le théorème de comparaison par inégalités des séries à termes positifs.

En effet, on a:

- $\boxed{1} \text{ Pour tout } n \in \mathbb{N}, \ \|f_n\|_{\infty}^I \leqslant u_n.$
- $\boxed{3}$ La série $\sum u_n$ converge.

Par comparaison par inégalité, on en déduit que la série $\sum ||f_n||_{\infty}^{I}$ converge.

Comment montrer qu'on a $||f_n||_{\infty}^I \leq u_n$?

On montre que pour tout $x \in I$, on a $|f_n(x)| \le u_n$ où u_n ne dépend pas de x. Ainsi, u_n est un majorant de l'ensemble $\{|f_n(x)|, x \in I\}$.

Comme $||f_n||_{\infty}^I$ est le plus petit majorant de cet ensemble, on en déduit que $||f_n||_{\infty}^I \leq u_n$.

Méthode 3 : (pour montrer qu'il n'y a pas convergence normale sur I) Si l'on trouve une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de I telle que la série $\sum |f_n(x_n)|$ diverge alors la série $\sum f_n$ ne converge pas normalement sur I.