Suites et séries de fonctions Compléments de cours

Régularité de la limite d'une suite de fonctions

Continuité de la fonction limite

Thm) • Continuité de la fonction limite

Soit $(f_n)_{n\geq 0}$ une suite de fonctions définies sur I, à valeurs dans \mathbb{K} . Si :

- 1) pour tout $n \in \mathbb{N}$, f_n est continue sur I,
- 2) la suite $(f_n)_{n\geq 0}$ converge uniformément sur tout segment de I vers une function f.

alors : la fonction limite f est également continue sur I.

Démo. \hookrightarrow Dans un premier temps, nous supperons que la convergence de $(f_n)_{n\geqslant 0}$ est uniforme sur la totalité de l'intervalle I.

> Fixons $a \in I$ et montrons la continuité de f au point a, c.à.d. que $f(x) \xrightarrow{a \to a} f(a)$. Il s'agit de montrer que :

$$\forall \varepsilon > 0, \exists \delta > 0 / \forall x \in I : \left[\left| x - a \right| \le \delta \right. \implies \left| f(x) - f(a) \right| \le \varepsilon \right].$$
 (*

Soulignons que dans cette proposition, δ peut dépendre de ε et de a, mais pas de la variable x.

Commençons par majorer |f(x)-f(a)| en reliant cet écart à une fonction f_n quelconque:

$$\forall n \in \mathbb{N}, \ \forall x \in I: \quad \left| f(x) - f(a) \right| = \left| \left(f(x) - f_n(x) \right) + \left(f_n(x) - f_n(a) \right) + \left(f_n(a) - f(a) \right) \right|$$

$$\leq \left| f(x) - f_n(x) \right| + \left| f_n(x) - f_n(a) \right| + \left| f_n(a) - f(a) \right|$$

$$\leq \left\| f - f_n \right\|_{\infty}^{I} + \left| f_n(x) - f_n(a) \right| + \left\| f_n - f \right\|_{\infty}^{I}$$

$$= 2 \left\| f_n - f \right\|_{\infty}^{I} + \left| f_n(x) - f_n(a) \right|.$$

Démontrons maintenant (*).

Fixons $\varepsilon > 0$ quelconque. Puisque la suite $(f_n)_{n \geqslant 0}$ converge uniformément sur Ivers f, il existe un rang $n_0 \in \mathbb{N}$ tel que $\left\| f_{n_0} - f \right\|_{\infty}^l \leqslant \varepsilon/3$. Pour ce rang n_0 , la fonction f_{n_0} est continue au point a, donc il existe un $\delta > 0$

tel que :

$$\forall x \in I: \left[\left| x - a \right| \le \delta \right] \Longrightarrow \left| f_{n_0}(x) - f_{n_0}(a) \right| \le \varepsilon/3.$$

Remarquons que le choix de n_0 et de δ dépendent de ε et de a, mais pas de la

Si l'on prend $x \in I$ tel que $|x-a| \le \delta$, la majoration ci-dessus donne au rang n_0 : $|f(x)-f(a)| \le 2 \cdot \varepsilon/3 + \varepsilon/3 = \varepsilon.$

La continuité de f au point a est démontrée.

▶ On affaiblit maintenant l'hypothèse de convergence : on suppose seulement que la suite $(f_n)_{n\geq 0}$ converge uniformément sur tout segment de I.

On fixe $a \in I$ et on enferme a dans un segment J = [b, c] de I:

- si a n'est pas une extrémité de I, on prend $b, c \in I$ tels que b < a < c;
- si a est l'extrémité gauche de I, on prend b=a et $c \in I$ quelconque;
- si a est l'extrémité droite de I, on prend $b \in I$ quelconque et c = a.

Dans tous les cas, le segment J = [b, c] est inclus dans I et contient le point a. Comme la continuité est une notion locale. il suffit de prouver que la fonction f restreinte à J est continue en a.

Or : la suite $(f_n)_{n\geq 0}$ converge uniformément sur J vers la fonction f, et les fonctions f_n sont toutes continues sur J.

Le premier point s'applique avec J dans le rôle de I, et la continuité de f au point a est démontrée.

Dérivabilité de la fonction limite

Thm • Dérivabilité de la fonction limite

Soit $(f_n)_{n\geq 0}$ une suite de fonctions définies sur I, à valeurs dans K. Si :

- 1) toutes les fonctions f_n sont de classe \mathscr{C}^1 sur I,
- 2) la suite $(f_n)_{n\geq 0}$ converge simplement sur *I* vers une fonction f,
- 3) la suite $(f'_n)_{n\geq 0}$ converge uniformément sur tout segment de I vers une fonction g,

Alors:

- 1) La fonction f est de classe \mathscr{C}^1 sur I;
- **2)** $\forall x \in I : f'(x) = g(x)$.

Démo. $^{\circ}$ Fixons un point $a \in I$ quelconque. Pour tout $n \in \mathbb{N}$, f_n est de classe \mathscr{C}^1 sur I. En d'autres termes, f_n est une primitive sur I de la fonction f'_n , qui est continue sur I. Par le théorème fondamental du calcul intégral :

$$\forall x \in I: \quad \int_a^x f_n'(t) dt = \left[f_n(t) \right]_a^x = f_n(x) - f_n(a).$$

Fixons $x \in I$ et faisons tendre n vers l'infini :

• Comme la suite $(f_n)_{n\geq 0}$ converge simplement sur I vers f:

$$f_n(x) \xrightarrow[n \to \infty]{} f(x)$$
 et $f_n(a) \xrightarrow[n \to \infty]{} f(a)$.

• Comme toutes les f'_n sont continues sur I et que la suite $(f'_n)_{n\geq 0}$ converge vers guniformément sur tout segment de I, le théorème d'interversion limite/intégrale sur un segment donne la continuité de g sur I et que :

$$\int_{a}^{x} f'_{n}(t) dt \xrightarrow[n \to \infty]{} \int_{a}^{x} g(t) dt.$$

On obtient ainsi en passant à la limite :

$$\forall x \in I: \int_a^x g(t) dt = f(x) - f(a).$$

Comme g est continue sur I, le théorème fondamental de l'analyse montre que f est une primitive de g sur I. La fonction f est donc dérivable sur I où elle vérifie f' = g. g étant continue sur I, f est en fait de classe \mathscr{C}^1 sur I.

Thm • Caractère \mathscr{C}^k de la fonction limite

Soit $k \in \mathbb{N}^*$ et $(f_n)_{n \ge 0}$ une suite de fonctions définies sur I, à valeurs dans \mathbb{K} .

- 1) toutes les fonctions f_n sont de classe \mathscr{C}^k sur I;
- 2) les suites $(f_n)_{n\geq 0}$, $(f'_n)_{n\geq 0}$, $(f''_n)_{n\geq 0}$, ..., $(f''_n)_{n\geq 0}$ convergent simplement sur *I* vers des fonctions $f = g_0, g_1, g_2, \ldots, g_{k-1}$;
- 3) la suite $(f_n^{(k)})_{n\geq 0}$ converge uniformément sur tout segment de I vers une fonction g_k ,

alors:

- 1) f est de classe \mathscr{C}^k sur I:
- **2)** $\forall k \in [1, p], f^{(k)} = g_k.$

Supposons qu'une suite $(\varphi_n)_{n\geq 0}$ de fonctions de classe \mathscr{C}^1 converge simplement $\operatorname{sur} I \operatorname{vers} \varphi, \ \operatorname{et} \operatorname{que} (\varphi_n')_{n\geqslant 0} \operatorname{converge} \operatorname{uniform\'ement} \operatorname{sur} \operatorname{tout} \operatorname{segment} \operatorname{de} I \operatorname{vers} \psi.$ Nous avons vu que f était aussi de classe \mathscr{C}^1 et que $\varphi' = \psi$ (théorème de dérivation de la limite).

Montrons que la convergence de $(\varphi_n)_{n\geqslant 0}$ est en fait uniforme sur tout segment

Soit $[a,b] \subset I$. Pour $n \in \mathbb{N}$ fixé, comme les fonctions φ_n et f sont de classe \mathscr{C}^1

$$\begin{aligned} \forall \, x \in [\, a, b \,], \quad \left| \, \varphi_n(x) - \varphi(x) \, \right| &= \left| \left(\varphi_n(a) + \int_a^x \varphi_n'(t) \, \mathrm{d}t \right) - \left(\varphi(a) + \int_a^x \varphi'(t) \, \mathrm{d}t \, \right) \right| \\ &= \left| \left(\varphi_n(a) - \varphi(a) \right) + \int_a^x \left(\varphi_n'(t) - \varphi'(t) \right) \, \mathrm{d}t \, \right| \\ &\leqslant \left| \, \varphi_n(a) - \varphi(a) \, \right| + \left| \int_a^x \left(\varphi_n'(t) - \varphi'(t) \right) \, \mathrm{d}t \, \right| \\ &\leqslant \left| \, \varphi_n(a) - \varphi(a) \, \right| + \int_a^x \left| \, \varphi_n'(t) - \varphi'(t) \, \right| \, \mathrm{d}t. \end{aligned}$$

Or: $\forall t \in [a, x], |\varphi'_n(t) - \varphi'(t)| \leq ||\varphi'_n - \varphi'||_{\infty}^{[a, b]},$ donc par croissance de l'intégrale à bornes croissantes :

$$\left| \varphi_n(x) - \varphi(x) \right| \le \left| \varphi_n(a) - \varphi(a) \right| + \int_a^x \left\| \varphi_n' - \varphi' \right\|_{\infty}^{[a,b]} dt$$

$$= \left| \varphi_n(a) - \varphi(a) \right| + \left\| \varphi_n' - \varphi' \right\|_{\infty}^{[a,b]} (x - a)$$

$$\le \left| \varphi_n(a) - \varphi(a) \right| + \left\| \varphi_n' - \varphi' \right\|_{\infty}^{[a,b]} (b - a).$$

Ce majorant étant indépendant de x, on en déduit que :

$$\|\varphi_n - f\|_{\infty}^{[a,b]} \le |\varphi_n(a) - \varphi(a)| + \|\varphi'_n - \varphi'\|_{\infty}^{[a,b]} (b-a).$$

Puisque $\varphi_n(a) \xrightarrow[n \to \infty]{} \varphi(a)$ et que la suite $(\varphi'_n)_{n \geqslant 0}$ converge uniformément sur [a,b] vers $\psi=\varphi'$, le majorant tend vers 0 quand $n\to\infty$; par théorème d'encadrement, on a montré que $(\varphi_n)_{n\geqslant 0}$ converge uniformément sur [a,b] vers φ .

\blacktriangleright Étape 2 : preuve du théorème par récurrence sur k.

Pour chaque $k \in \mathbb{N}^*$, notons $\mathcal{H}(k)$ l'affirmation « le théorème est vrai pour les fonctions de classe \mathscr{C}^k ».

- Initialisation. Pour k=1, $\mathcal{H}(1)$ n'est rien d'autre que le théorème de dérivation de la limite; $\mathcal{H}(1)$ a donc déjà été démontrée.
- **Hérédité.** Fixons $k \in \mathbb{N}^*$ et supposons $\mathcal{H}(k)$ démontrée. On considère alors $(f_n)_{n\geq 0}$ une suite de fonctions de classe \mathscr{C}^{k+1} sur I, dont les dérivées d'ordre $j \in [0, k]$ convergent simplement sur I vers des fonctions g_k , et dont les dérivées d'ordre (k+1) convergent uniformément sur tout segment de Ivers une fonction g_{k+1} .

Posons $\varphi_n := f_n^{(k)}$ pour tout $n \ge 0$. Les fonctions φ_n sont de classe \mathscr{C}^1 sur I, la suite $(\varphi_n)_{n\geq 0}$ converge simplement sur I vers $\varphi=g_k$ et la suite $(\varphi'_n)_{n\geq 0}$ converge uniformément sur tout segment de I vers $\psi = g_{k+1}$.

Par le théorème de dérivation de la limite, on obtient que $g_k \in \mathcal{C}^1(I, \mathbb{K})$, que $g_k' = g_{k+1}$ et surtout, d'après l'étape 1, que $(\varphi_n)_{n\geqslant 0} = (f_n^{(k)})_{n\geqslant 0}$ converge uniformément sur tout segment de I.

Les conditions sont réunies pour appliquer $\mathcal{H}(k)$ à la suite $(f_n)_{n\geq 0}$: on en déduit que $f \in \mathcal{C}^k(I, \mathbb{K})$ et que $f^{(j)} = g_i$ pour tout $j \in [0, p]$.

Enfin, $f^{(k)} = g_k \in \mathscr{C}^1(I, \mathbb{K})$ donc f est en fait de classe \mathscr{C}^{k+1} sur I, et $f^{(k+1)} = g'_{k} = g_{k+1}$. L'hypothèse $\mathcal{H}(k+1)$ est démontrée.

Modes de convergence d'une série de fonctions

Convergence uniforme d'une série de fonctions

[Propr.] • Lien entre les convergences

La convergence uniforme d'une série de fonction sur *I* implique sa convergence uniforme sur tout segment sur I; cette dernière implique sa convergence simple sur *I*.

Démo. $^{\circ}$ On note $(S_n)_{n\geqslant 0}$ la suite des sommes partielles associée à la série de fonctions $\sum f_n$.

- Supposons que $\sum_{n \ge 0} f_n$ converge uniformément sur I. Cela signifie que la suite de fonctions $(S_n)_{n\geqslant 0}$ converge uniformément sur I. Par conséquent, la suite $(S_n)_{n\geqslant 0}$ converge uniformément sur tout segment de I, autrement dit : la série $\sum_{n\geq 0}^{\infty} f_n$ converge uniformément sur tout segment de I.
- De même, si l'on suppose que $\sum f_n$ converge uniformément sur tout segment de I, alors $(S_n)_{n \ge 0}$ CUSTS de I, donc $(S_n)_{n \ge 0}$ converge simplement sur I, autrement dit $\sum_{n=1}^{\infty} f_n$ converge simplement sur I.

Propr.

• Conditions nécessaires pour la convergence uniforme d'une série de fonctions

Soit $\sum_{n\geqslant 0}f_n$ une série de fonctions de I dans $\mathbb{K}.$

Si la série $\sum f_n$ converge uniformément sur I, alors :

- 1) les fonctions f_n sont bornées à partir d'un certain rang et la suite $(f_n)_{n\geq 0}$ converge uniformément sur I vers la fonction nulle;
- **2)** Pour toute suite $(x_n)_{n\geq 0} \in I^{\mathbb{N}}$, la suite numérique $(f_n(x_n))_{n\geq 0}$ tend vers 0.

Démo. $^{\circ}$ Soit $(S_n)_{n\geqslant 0}$ la suite des sommes partielles associées à la série $\sum_{n\geq 0} f_n$.

Supposons que la série $\sum f_n$ converge uniformément sur I; notons S sa somme.

1) Remarquons que : $\forall n \ge 1$, $f_n = S_n - S_{n-1}$. Or, puisque $\sum_{n \ge 0} f_n$ CU sur I, les fonctions S_n sont bornées à partir d'un certain Une différence de deux fonctions bornées étant bornée, les fonctions f_n sont donc bornées sur I pour tout $n \ge n_0 + 1$. De plus, dans l'espace vectoriel $E = \mathcal{B}(I, \mathbb{K})$

$$\begin{cases} S_n \xrightarrow[n \to \infty]{\parallel \cdot \parallel_{\infty}^l} S \\ S_{n-1} \xrightarrow[n \to \infty]{\parallel \cdot \parallel_{\infty}^l} S \end{cases} \qquad \text{donc} \qquad f_n = S_n - S_{n-1} \xrightarrow[n \to \infty]{\parallel \cdot \parallel_{\infty}^l} S - S = (x \mapsto 0).$$
 (par différence de limites)

2) Soit $(x_n)_{n \ge 0}$ une suite d'éléments de I. Alors :

muni de la norme uniforme sur I:

$$\forall n \ge 0, \quad 0 \le |f_n(x_n)| \le \sup_{x \in I} |f_n(x)| = ||f_n||_{\infty}^I$$

Puisque $\|f_n\|_{\infty}^I \xrightarrow[n \to \infty]{} 0$ d'après le point précédent, $f_n(x_n) \xrightarrow[n \to \infty]{} 0$ par le théorème d'encadrement.

Régularité de la somme d'une série de fonctions

Continuité et limites d'une somme de série de fonctions

Thm • Continuité de la somme

Soit $\sum_{n\geqslant 0}f_n$ une série de fonctions de I dans \mathbb{K} . Si :

- 1) pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur I,
- **2)** la série $\sum_{n\geqslant 0} f_n$ converge uniformément sur toute segment de I,

alors : la somme $S = \sum_{n=0}^{\infty} f_n$ est continue sur I.

Démo. $^{\circ}$ Notons $(S_n)_{n\geqslant 0}$ les sommes partielles de la série $\sum\limits_{n\geqslant 0}f_n$ et S la somme de la série, définie sur I

On applique le théorème de continuité de la **limite** à la **suite** de fonctions $(S_n)_{n\geq 0}$:

- * Pour tout $n \ge 0$, la fonction $S_n = \sum_{k=0}^n f_k$ est continue sur I en tant que somme d'un nombre fini de fonctions continues sur I.
- * Puisque la série $\sum_{n=0}^{\infty} f_n$ CUSTS de I, par définition, la suite $(S_n)_{n\geqslant 0}$ CUSTS de I

Ceci prouve que la fonction S est continue sur I.

Intégration terme à terme d'une série de fonctions

- [Thm] Intégration terme à terme d'une série de fonctions sur un segment Soit $\sum_{n\geqslant 0}f_n$ une série de fonctions de I dans $\mathbb{K},\ a,b\in I$. Si :
 - 1) pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur I,
 - 2) la série de fonctions $\sum f_n$ converge uniformément sur tout segment de I, de somme S.

Alors:

- 1) la fonction S est continue sur I;
- 2) la série numérique $\sum_{n \ge 0} \left(\int_a^b f_n(x) dx \right)$ est convergente;

3)
$$\int_a^b S(x) dx \stackrel{\text{def}}{=} \int_a^b \left(\sum_{n=0}^\infty f_n(x) \right) dx \stackrel{\text{thm}}{=} \sum_{n=0}^\infty \int_a^b f_n(x) dx.$$

Démo. $^{\odot}$ Notons $(S_n)_{n\geqslant 0}$ les sommes partielles de la série de fonctions $\sum\limits_{n\geqslant 0}f_n$, S sa somme, définie sur I.

On applique le théorème d'interversion $\int_a^b / \lim_{n \to \infty}$ à la <u>suite</u> de fonctions $(S_n)_{n \geqslant 0}$:

- 1) Toutes les fonctions S_n sont continues sur I, en tant que sommes d'un nombre fini de fonctions continues sur I.
- 2) La suite $(S_n)_{n\geqslant 0}$ CUSTS de I vers S car la série $\sum_{n\geqslant 0} f_n$ CUSTS de I.

On en déduit que S est continue sur I et que :

$$\begin{split} \int_a^b S(x) \, \mathrm{d}x &= \int_a^b \left(\lim_{n \to \infty} S_n(x) \right) \mathrm{d}x \qquad \text{(définition de } S \text{)} \\ &= \lim_{n \to \infty} \int_a^b S_n(x) \, \mathrm{d}x \qquad \text{(interversion } \int_a^b \Big/ \lim_{n \to \infty} \text{)} \\ &= \lim_{n \to \infty} \int_a^b \sum_{k=0}^n f_k(x) \, \mathrm{d}x \qquad \text{(définition de } S_n \text{)} \\ &= \lim_{n \to \infty} \sum_{k=0}^n \int_a^b f_k(x) \, \mathrm{d}x. \qquad \text{(linéarité de l'intégrale sur un segment)} \end{split}$$

On vient de prouver que la série <u>numérique</u> $\sum_{n\geq 0} \int_a^b f_n(x) dx$ est convergente, et que :

$$\int_a^b S(x) dx = \sum_{n=0}^\infty \int_a^b f_n(x) dx.$$

Dérivation terme à terme d'une série de fonctions

Thm • Dérivation terme à terme d'une série de fonctions Soit $\sum f_n$ une série de fonctions de I dans \mathbb{K} . Si :

- 1) pour tout $n \in \mathbb{N}$, la fonction f_n est de classe \mathscr{C}^1 sur I,
- 2) la série $\sum_{n} f_n$ converge simplement sur I, de somme S,
- 3) la série $\sum_{n} f'_{n}$ converge uniformément sur tout segment de I_{n} alors:
- 1) la somme S est de classe \mathscr{C}^1 sur I,

$$\forall x \in I, \quad S'(x) \stackrel{\text{def}}{=} \frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{n=0}^{\infty} f_n(x) \right) = \sum_{n=0}^{\infty} f'_n(x).$$

Démo. $^{\odot}$ Notons $(S_n)_{n\geqslant 0}$ les sommes partielles de la série $\sum\limits_{n\geqslant 0}f_n$, S la somme de cette série, définie sur I . $^{n\geqslant 0}$

On applique le théorème de dérivation de la fonction limite à la suite $(S_n)_{n\geq 0}$ des sommes partielles de la série $\sum f_n$:

1) Toutes les fonctions $S_n := \sum_{k=0}^n f_k$ sont de classe \mathscr{C}^1 sur I, en tant que sommes d'un nombre fini de fonctions de classe \mathscr{C}^1 ; de plus :

$$\forall \, x \in I, \quad S_n'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{k=0}^n f_k(x) \right) = \sum_{k=0}^n f_k'(x). \qquad \text{(linéarité de la dérivation)}$$

- 2) La suite $(S_n)_{n\geqslant 0}$ CS sur I vers la fonction S car la série $\sum_{n \geq 0} f_n$ converge simplement
- 3) La suite $(S_n')_{n\geqslant 0}$ CUSTS sur I car la série $\sum_{n\geqslant 0} f_n'$ CUSTS sur I.

On en déduit que : la fonction S est de classe \mathscr{C}^1 sur I et que

$$\forall x \in I, \quad S'(x) = \lim_{n \to \infty} S'_n(x) = \lim_{n \to \infty} \left(\sum_{k=0}^n f'_k(x) \right) = \sum_{k=0}^\infty f'_k(x).$$

Exercice 25 \blacktriangleright On considère la fonction $S: x \mapsto \sum_{n=0}^{\infty} \frac{e^{-nx}}{n^2 + x}$.

On pose, pour tout $n \ge 1$: $f_n: x \mapsto \frac{e^{-nx}}{n^2 + x}$.

- 1) On applique le théorème de continuité de la somme :
 - * Toutes les fonctions f_n sont continues sur $I = \mathbb{R}_+$ (quotient d'une exponentielle par un polynôme ne s'annulant par sur IR₊)
 - * Montrons la CN de la série $\sum_{n>1} f_n$ sur \mathbb{R}_+ . On fixe $n \ge 1$:

$$\forall \, x \geqslant 0, \quad |f_n(x)| = \frac{\mathrm{e}^{-nx}}{n^2 + x} \leqslant \frac{1}{n^2} \quad \text{indépendant de } x,$$

$$\mathrm{donc} \quad 0 \leqslant \|f_n\|_{\infty}^{\mathbb{R}_+} \leqslant \frac{1}{n^2}.$$

De plus, la série $\sum \frac{1}{n^2}$ est convergente (série Riemann d'exposant

Par théorème de comparaison pour les séries numériques, $\sum_{n=1}^{\infty} \|f_n\|_{\infty}^{l}$

donc la série $\sum f_n$ CN, donc CU sur \mathbb{R}_+ .

Conclusion. La fonction S est bien définie sur \mathbb{R}_{\perp} et elle y est continue.

- 2) On va appliquer le théorème de dérivation de la somme sur tout segment $de J = IR^*$:
 - * Pour tout $n \ge 1$, $f_n \in \mathcal{C}^1(J, \mathbb{K})$ et :

$$\forall x \ge 0, \quad f_n'(x) = \frac{d}{dx} \left(\frac{e^{-nx}}{n^2 + x} \right)$$

$$= \frac{-n e^{-nx} \times (n + x^2) - e^{-nx} \times 1}{(n + x^2)^2}$$

$$= -e^{-nx} \frac{n x + n^3 + 1}{(n + x^2)^2}.$$

- * La série $\sum_{n\geqslant 1}f_n$ CN sur I d'après la question précédente, donc elle CS sur J .
- * Montrons que $\sum_{n>1} f'_n$ CNSTS de J. Soit $[a, b] \subset J = [0, +\infty)$, de sorte que 0 < a < b. Pour $n \ge 1$ fixé, on a :

$$\forall x \in [a, b], \quad \left| f'_n(x) \right| = e^{-nx} \frac{n \, x + n^3 + 1}{(n^2 + x)^2}$$

$$\leq e^{-na} \frac{n \, b + n^3 + 1}{n^4} \quad \text{indépendant de } x,$$

$$\text{donc} \quad 0 \leq \left\| f'_n \right\|_{\infty}^{[a, b]} \leq e^{-na} \frac{n \, b + n^3 + 1}{n^4}.$$

Posons $v_n := e^{-na} \frac{nb + n^3 + 1}{n^4}$ et montrons que $\sum_{n \ge 1} v_n$ converge :

$$\forall n \geqslant 1, \quad \frac{\nu_n}{\mathrm{e}^{-na}} = \frac{n \, b + n^3 + 1}{n^4} \underset{n \to \infty}{\sim} \frac{b}{n} \xrightarrow[n \to \infty]{} 0, \quad \mathsf{d'où} \quad \nu_n = \mathrm{o} \left(\mathrm{e}^{-na} \right).$$

De plus, $\mathrm{e}^{-na}\geqslant 0$ pour tout $n\geqslant 1$ et la série géométrique $\sum_{n\geqslant 1}\mathrm{e}^{-na}$ converge $\underline{\operatorname{car}\ a>0}$, donc la série $\sum \nu_n$ converge bien.

Par un deuxième théorème de comparaison, $\sum \left\|f_n'\right\|_{\infty}^I$ converge

Par conséquent, la série $\sum_{n\geq 1} f'_n$ CNSTS de J, donc CUSTS.

Conclusion. On a ainsi démontré que la somme S de $\sum f_n$ est de classe \mathscr{C}^1 sur $J =]0, +\infty[$, et qu'on peut dériver terme à terme :

$$\forall x > 0, \quad S'(x) \stackrel{\text{def}}{=} \frac{d}{dx} \left(\sum_{n=1}^{\infty} \frac{e^{-nx}}{n^2 + x} \right)$$

$$\stackrel{\text{thm}}{=} -\sum_{n=1}^{\infty} e^{-nx} \frac{n x + n^3 + 1}{(n^2 + x)^2}.$$

3) Montrons que S' est croissante sur \mathbb{R}_{+}^{*} par la définition de la croissance. Prenons x, y deux réels tels que $0 < x \le y$, et prouvons que :

$$S'(x) \le S'(y)$$
 c.à.d. $\sum_{n=1}^{\infty} f'_n(x) \le \sum_{n=1}^{\infty} f'_n(y)$.

• Fixons $n \ge 1$ et montrons que f'_n est croissante sur \mathbb{R}^*_+ . Comme f_n est 2 fois dérivable, il suffit de prouver que $f_n'' \ge 0$ sur I. Par la formule de dérivation de Leibniz :

$$\begin{aligned} \forall \, x > 0 : \quad & f_n''(x) \\ &= \frac{d^2}{\mathrm{d}x^2} \left(\mathrm{e}^{-nx} \times \frac{1}{n^2 + x} \right) \\ &= \frac{d^2}{\mathrm{d}x^2} \left(\mathrm{e}^{-nx} \right) \times \frac{1}{n^2 + x} + 2 \frac{d}{\mathrm{d}x} \left(\mathrm{e}^{-nx} \right) \times \frac{d}{\mathrm{d}x} \left(\frac{1}{n^2 + x} \right) \\ &\quad + \mathrm{e}^{-nx} \times \frac{d^2}{\mathrm{d}x^2} \left(\frac{1}{n^2 + x} \right) \\ &= n^2 \, \mathrm{e}^{-nx} \times \frac{1}{n^2 + x} - 2 \, n \, \mathrm{e}^{-nx} \times - \frac{1}{(n^2 + x)^2} + \mathrm{e}^{-nx} \times \frac{2}{(n^2 + x)^3} \\ &= \mathrm{e}^{-nx} \left(\frac{n^2}{n^2 + x} + \frac{2n}{(n^2 + x)^2} + \frac{2}{(n^2 + x)^3} \right) \ge 0. \end{aligned}$$

La fonction f_n' est bien croissante sur \mathbb{R}_+^* .

• Fixons x < y deux éléments de \mathbb{R}^*_{\perp} . D'après le point précédent :

$$\forall n \in \mathbb{N}^*: f'_n(x) \leq f'_n(y).$$

Comme les séries $\sum_{n\geqslant 0} f_n'(x)$ et $\sum_{n\geqslant 0} f_n'(y)$ sont convergente, par croissance de la sommation :

$$\sum_{n=0}^{\infty} f'_n(x) \le \sum_{n=0}^{\infty} f'_n(y) \quad \text{autrement dit} : \quad S'(x) \le S'(y).$$

Conclusion. La fonction S' est croissante sur $]0,+\infty[$.

4) • Puisque la fonction S' est croissante sur $]0,+\infty[$, par le théorème de limite monotone, elle admet une limite $\ell \in \mathbb{R} \cup \{-\infty\}$ en 0^+ . Soit x > 0; comme S'(x) est somme d'une série à termes négatifs, elle est inférieure à ses sommes partielles. Pour tout x > 0 et tout entier $N \ge 1$:

$$S'(x) = -\sum_{n=1}^{\infty} e^{-nx} \frac{nx + n^3 + 1}{(n^2 + x)^2} \le -\sum_{n=1}^{N} e^{-nx} \frac{nx + n^3 + 1}{(n^2 + x)^2}.$$
 (*)

Observons ce qui se passe quand $x \to 0^+$:

$$* S'(x) \xrightarrow[x \to 0^+]{N} \ell;$$

$$\stackrel{N}{\longrightarrow} nx + n^3 + 1$$

$$* - \sum_{n=1}^{N} e^{-nx} \frac{nx + n^{3} + 1}{(n^{2} + x)^{2}} \xrightarrow[x \to 0^{+}]{} - \sum_{n=1}^{N} \frac{n^{3} + 1}{n^{4}}$$
(sommed'up nombre fini de

(somme d'un nombre fini de limites)

On peut maintenant passer à la limite dans les inégalités (*) :

$$\forall N \ge 1, \quad \ell \le -\sum_{n=1}^{N} \frac{n^3 + 1}{n^4} \le -\sum_{n=1}^{N} \frac{n^3}{n^4} = -\sum_{n=1}^{N} \frac{1}{n}.$$
 (**)

L'opposé de la série harmonique $\sum_{n\geq 1} -\frac{1}{n}$ est divergente (par un théorème de comparaison) et que ses sommes partielles tendent vers $-\infty$ Quand $N \to \infty$, par passage à la limite dans (**), on obtient $\ell \leq -\infty$. et donc $\ell = -\infty$.

Conclusion. $S'(x) \xrightarrow{x \to 0^+} -\infty$

- Appliquons maintenant le théorème de la limite de la dérivée à la fonction S sur $]0,+\infty[$:
 - * S est continue sur $[0, +\infty[$:
 - * S est dérivable sur $]0,+\infty[$;
 - $* S'(x) \xrightarrow[x\to 0^+]{} -\infty.$

On en déduit que la limite du taux d'accroissement de S en 0 vaut également -∞ :

$$\frac{S(x)-S(0)}{x-0} \xrightarrow[x\to 0^+]{} -\infty.$$

Cela montre que la fonction S n'est pas dérivable en O, et que sa courbe présente en ce point une demi-tangente verticale.

- Thm Caractère \mathscr{C}^k d'une somme de série de fonctions Soit $\sum f_n$ une série de fonctions de I dans \mathbb{K} , $k \in \mathbb{N}^*$. Si:
 - 1) pour tout $n \in \mathbb{N}$, la fonction f_n est de classe \mathscr{C}^k sur I,
 - **2)** les séries $\sum_{n\geqslant 0} f_n, \sum_{n\geqslant 0} f'_n, \ldots, \sum_{n\geqslant 0} f'_n$ convergent simplement sur I,
 - 3) la série $\sum f_n^{(k)}$ converge uniformément sur tout segment de I,

alors : la somme $S = \sum_{n=0}^{\infty} f_n$ est de classe \mathscr{C}^k sur I, et

$$\forall j \in \llbracket 0, k \rrbracket, \ \forall x \in I: \quad S^{(j)}(x) \stackrel{\text{def}}{=} \frac{\mathrm{d}^j}{\mathrm{d} x^j} \left(\sum_{n=0}^{\infty} f_n(x) \right) = \sum_{n=0}^{\infty} f_n^{(j)}(x).$$

Démo. $^{\circ \!\!\!\! o}$ On applique le théorème de dérivation de la limite à l'ordre k à la suite $(S_n)_{n\geqslant 0}$ des sommes partielles de la série $\sum_{n\geqslant 0} f_n$:

- * Les fonctions S_n sont de classe \mathscr{C}^k sur I en tant que sommes d'un **nombre fini** de fonctions de classe \mathscr{C}^p :
- * Pour chaque $k \in [\![0,k-1]\!]$, les suites $(S_n^{(j)})_{n\geqslant 0}$ convergent simplement sur I, respectivement vers les sommes g_j des séries $\sum_{n\geqslant 0} f_n^{(j)}$;
- * La suite $(S_n^{(k)})$ converge uniformément sur tout segment de I vers la somme g_k de la série $\sum_{n\geqslant 0}f_n^{(k)}.$

On en déduit que $g_0 \coloneqq \sum_{n=0}^\infty f_n = S$ est de classe \mathscr{C}^k sur I, et que :

$$\forall j \in [0, k]: \quad S^{(j)} = g_j = \sum_{n=0}^{\infty} f_n^{(j)}.$$