Corrigé du devoir maison nº 2

Exercice 1

Racines n-ièmes complexes d'une matrice non diagonalisable

Soit
$$A = \begin{pmatrix} -3 & 3 & -5 \\ -1 & 2 & -1 \\ 3 & -2 & 5 \end{pmatrix}$$
, $n \in \mathbb{N}$ tel que $n \ge 2$ et $P = X^3 - 4X^2 + 5X - 2$.

1) a. Puisque 1 est racine évidente de *P* :

$$P = X^3 - 4X^2 + 5X - 2 = (X - 1)(X^2 - 3X + 2)$$

= $(X - 1)(X - 1)(X - 2) = (X - 1)^2(X - 2)$.

b. Calculons P(A):

$$\begin{split} P(A) &= (A - \mathbf{I}_3)^2 \times (A - 2\mathbf{I}_3) \\ &= \begin{pmatrix} -4 & 3 & -5 \\ -1 & 1 & -1 \\ 3 & -2 & 4 \end{pmatrix} \times \begin{pmatrix} -4 & 3 & -5 \\ -1 & 1 & -1 \\ 3 & -2 & 4 \end{pmatrix} \times \begin{pmatrix} -5 & 3 & -5 \\ -1 & 0 & -1 \\ 3 & -2 & 3 \end{pmatrix} \\ &= \begin{pmatrix} -2 & 1 & -3 \\ 0 & 0 & 0 \\ 2 & -1 & 3 \end{pmatrix} \times \begin{pmatrix} -5 & 3 & -5 \\ -1 & 0 & -1 \\ 3 & -2 & 3 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \end{split}$$

Conclusion : *P* est un polynôme annulateur de *A*.

Soit $F = \text{Ker}(A - 2I_3)$ et $G = \text{Ker}((A - I_3)^2)$.

2) **a.** • On a :
$$rg(A - 2I_3) = rg\begin{pmatrix} -5 & 3 & -5 \\ -1 & 0 & -1 \\ 3 & -2 & 3 \end{pmatrix} = rg\begin{pmatrix} -5 & 3 \\ -1 & 0 \\ 3 & -2 \end{pmatrix} = 2$$
 car $C_1 = C_3$, et les deux colonnes restantes sont non colinéaires.

• La matrice $(A - I_3)^2$ a été calculée dans la question précédente, et :

$$\operatorname{rg}((A-I_3)^2) = \operatorname{rg}\begin{pmatrix} -2 & 1 & -3\\ 0 & 0 & 0\\ 2 & -1 & 3 \end{pmatrix} = \operatorname{rg}(-2 \ 1 \ -3) = 1$$

car $L_2 = 0_{1.3}$, $L_3 = -L_1$, et la ligne restante est non nulle.

Conclusion: $rg(A-2I_3) = 2$ et $rg((A-I_3)^2) = 1$

b. • Le théorème du rang matriciel donne, pour toute matrice M:

$$n_{col}(M) = \dim(Ker(M)) + rg(M).$$

Appliqué aux matrices $A - 2I_3$ et $(A - I_3)^2$, on obtient :

$$\dim(F) = \dim \operatorname{Ker}(A - 2I_3) = 3 - \operatorname{rg}(A - 2I_3) = 3 - 2 = 1$$
et
$$\dim(G) = \dim \operatorname{Ker}((A - I_3)^2) = 3 - \operatorname{rg}((A - I_3)^2) = 3 - 1 = 2.$$

• Pour trouver une base de F, il suffit donc de trouver un vecteur non nul de $F = \text{Ker}(A - 2I_3)$. Or :

$$A - 2I_3 = \begin{pmatrix} -5 & 3 & -5 \\ -1 & 0 & -1 \\ 3 & -2 & 3 \end{pmatrix} \quad \text{v\'erifie} \quad C_1 = C_3, \ \text{d\'où} \ C_1 - C_3 = 0_{3,1}.$$

On en tire : $V_1 := \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \in \text{Ker}(A - I_3) = F$ et (V_1) est une base de F.

• Pour trouver une base de G, il suffit de trouver 2 vecteurs non colinéaires de $G = \text{Ker}((A - I_3)^2)$. Or :

$$(A - I_3)^2 = \begin{pmatrix} -2 & 1 & -3 \\ 0 & 0 & 0 \\ 2 & -1 & 3 \end{pmatrix}$$
 vérifie :
$$\begin{cases} C_1 + 2C_2 = 0_{3,1} \\ 3C_2 + C_3 = 0_{3,1}. \end{cases}$$

En posant $V_2 := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $V_3 := \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, on a $V_2, V_3 \in G$ et les vecteurs V_2, V_3 ne sont pas colinéaires : (V_2, V_3) est une base de G.

c. Montrons que F et G sont supplémentaires dans \mathbb{C}^3 .

Par le théorème de juxtaposition de bases, il suffit de montrer que la famille $\mathscr{F} := (V_1, V_2, V_3)$ est une base de \mathbb{C}^3 :

• Card(\mathscr{F}) = 3 = dim(\mathbb{C}^3);

•
$$\det(\mathscr{F}) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ -1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = -1 \neq 0.$$

 \mathscr{F} est bien une base de \mathbb{C}^3 , donc F et G sont supplémentaires dans \mathbb{C}^3 : $F \oplus G = \mathbb{C}^3$.

Soit $u: V \in \mathbb{C}^3 \mapsto AV \in \mathbb{C}^3$.

- 3) a. u est l'endomorphisme de \mathbb{C}^3 canoniquement associé à la matrice A, donc sa matrice dans la base canonique de \mathbb{C}^3 est A.
 - **b.** Cherchons une base $\mathcal{B}' = (e_1, e_2, e_3)$ de \mathbb{C}^3 où $\max_{\mathcal{B}'}(u) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

 Analyse. Supposons upe telle bess \mathcal{B}' .
 - En lisant les colonnes de la matrice de u, on obtient les équations :

$$\begin{cases} u(e_1) = 2e_1 \\ u(e_2) = e_2 \\ u(e_3) = e_3 + e_2 \end{cases} \quad \text{donc} \quad \begin{cases} (A - 2I_3)e_1 = 0_{3,1} \\ (A - I_3)e_2 = 0_{3,1} \\ (A - I_3)e_3 = e_2 \neq 0_{3,1}. \end{cases}$$

Nous retiendrons:

- e_1 est dans $Ker(A-2I_3)=F$.
- e_2 se déduit de e_3 par la relation $e_2 = (A I_3)e_3$.
- e_3 n'est pas dans $Ker(A-I_3)$, mais il est dans $Ker((A-I_3)^2) = G$. En effet: $(A-I_2)^2 e_2 = (A-I_2) e_2 = 0_{3.1}$.

▶ Synthèse

• Prenons $e_1 := V_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, de sorte que $e_1 \in F$. Regardons si le vecteur V_2 de G est dans $Ker(A-I_3)$:

$$(A-I_3) V_2 = \begin{pmatrix} -4 & 3 & -5 \\ -1 & 1 & -1 \\ 3 & -2 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \neq 0_{3,1} : \text{ce n'est pas le cas.}$$

Nous prendrons donc: $e_3 := V_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $e_2 := (A - I_3)V_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$.

• La famille $\mathscr{B}' := (e_1, e_2, e_3)$ est bien une base de \mathbb{C}^3 car elle comporte 3 vecteurs et:

$$\det_{\mathcal{B}_{\operatorname{can}}}(e_1, e_2, e_3) = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ -1 & -1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = -1 \neq 0.$$

- Calculons les images des e_i par u, c'est-à-dire les vecteurs Ae_i :
 - $* e_1 \in F \text{ donc } (A 2I_3)e_1 = 0_{3,1} \text{ d'où } Ae_1 = 2e_1;$

*
$$Ae_2 = \begin{pmatrix} -3 & 3 & 5 \\ -1 & 2 & -1 \\ 3 & -2 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = e_2;$$

*
$$e_2 = (A - I_3)e_3$$
 donc $Ae_3 = e_2 + e_3$.

Finalement:
$$\max_{\mathscr{B}}(u) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = T.$$

Conclusion : Si l'on pose :
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$,

alors $\mathscr{B}' := (e_1, e_2, e_3)$ est une base de \mathbb{C}^3 et $\max(u) = T$.

c. Écrivons la formule de changement de base, de \mathcal{B} vers \mathcal{B}' , pour l'endomorphisme u. La matrice de passage de la base canonique \mathcal{B} à \mathcal{B}' est

$$P = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ -1 & -1 & 0 \end{pmatrix} \quad \text{et on a}: \quad \underbrace{A}_{\mathscr{B}} = \underbrace{P}_{\mathscr{B} \to \mathscr{B}'} \underbrace{T}_{\mathscr{B}'} P^{-1}.$$

Les matrices A et T sont donc semblables dans \mathbb{C} , mais aussi dans \mathbb{R} car toutes les matrices de cette formule sont à coefficients réels.

- **4)** Soit $\varphi \in \mathcal{L}(\mathbb{C}^3)$, $M = \max_{\alpha}(\varphi)$. On suppose que $M^n = T$.
 - **a.** Puisque $T = \max_{\mathscr{B}'}(u)$, $\varphi^n = u$. Alors: $u \circ \varphi = \varphi^n \circ \varphi = \varphi^{n+1} = \varphi^n \circ \varphi = u \circ \varphi$.

Conclusion : Les endomorphismes u et φ commutent.

b. • Rappelons que $F = \text{Ker}(A - 2I_3) = \text{Ker}(u - 2id_{\mathbb{C}^3})$ et que $G = \text{Ker}((A - I_3)^2) = \text{Ker}((u - id_{G^3})^2)$.

Puisque φ commute avec u, φ commute également avec $u - 2 \operatorname{id}_{\mathbb{C}^3}$ et $(u-\mathrm{id}_{\mathbb{C}^3})^2$. Pour cette raison, F et G sont stables par φ .

• Les sous-espaces F et G sont supplémentaires dans \mathbb{C}^3 et sont stables par φ . Dans la base \mathscr{B}' , qui est adaptée à $F \oplus G$, la matrice de φ est donc diagonale par blocs, de la forme :

$$M = \begin{pmatrix} \alpha & 0_{1,2} \\ 0_{2,1} & Y \end{pmatrix},$$

où $\alpha \in \mathbb{C}$ et Y est la matrice de l'endomorphisme φ_G induit par φ sur G dans la base $\mathcal{B}_G = (e_2, e_3)$.

c. • Puisque $u \circ \varphi = \varphi \circ u$, en prenant les matrices dans la base \mathscr{B}' , on obtient TM = MT. En notant $U := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et en calculant par blocs :

$$\begin{pmatrix} 2 & \cdot \\ \cdot & U \end{pmatrix} \begin{pmatrix} \alpha & \cdot \\ \cdot & Y \end{pmatrix} = \begin{pmatrix} \alpha & \cdot \\ \cdot & Y \end{pmatrix} \begin{pmatrix} 2 & \cdot \\ \cdot & U \end{pmatrix}$$
$$\operatorname{donc} \quad \begin{pmatrix} 2\alpha & \cdot \\ \cdot & UY \end{pmatrix} = \begin{pmatrix} 2\alpha & \cdot \\ \cdot & YU \end{pmatrix} \quad \operatorname{d'où} \quad UY = YU.$$

La matrice Y commute donc avec $U := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

• Écrivons
$$Y = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
: $UY = YU$ donc $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, d'où $\begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix} = \begin{pmatrix} a & a+b \\ c & c+d \end{pmatrix}$, $a+c=a$ et $b+d=a+b$, puis $c=0$ et $a=d$.

La matrice Y est donc de la forme $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ où $a, b \in \mathbb{C}$.

d. Soit $N := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, de sorte que $Y = a I_2 + b N$. Remarquons que $N^2 = 0_2$, d'où $N^k = 0_2$ pour tout entier $k \ge 2$. De plus, I_2 et N commutent, donc on peut appliquer la formule du binôme de Newton pour calculer Y^n (rappelons que, dans tout l'exercice, $n \ge 2$):

$$Y^{n} = (a I_{2} + b N)^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (a I_{2})^{n-k} \times (b N)^{k}$$

$$= \underbrace{a^{n} I_{2}}_{k=0} + \underbrace{n a^{n-1} b N}_{k=1} + \underbrace{0_{2} + \dots + 0_{2}}_{N^{k} = 0_{2} \operatorname{car} k \geqslant 2}$$

$$= \binom{a^{n} \quad n \, a^{n-1} \, b}{0 \quad a^{n}}.$$

- **5)** Soit $M \in \mathcal{M}_3(\mathbb{C})$ une matrice quelconque.
 - **a.** Les racines n^e de l'unité sont les nombres complexes :

$$\omega_k := e^{i2k\pi/n}$$
 pour $k \in [0, n-1]$.

• Les racines n^e complexes du nombre 2 sont les nombres :

$$2^{1/n} e^{i2k\pi/n} = 2^{1/n} \omega_k$$
 pour $k \in [0, n-1]$.

En effet, pour $z \in \mathbb{C}^*$ quelconque que l'on écrit sous forme exponentielle $z = r e^{i\theta}$ (où r > 0 et $\theta \in \mathbb{R}$), on a :

$$z^{n} = 2 \iff r^{n} e^{in\theta} = 2 e^{i0}$$

$$\iff \begin{cases} r^{n} = 2 = (2^{1/n})^{n} \\ n \theta \equiv 0 \quad [2\pi] \end{cases}$$

$$\iff \begin{cases} r = 2^{1/n} \quad (\operatorname{car} x \mapsto x^{n} \text{ est bijective sur }]0, +\infty[) \\ \theta \equiv 0 \quad [2\pi/n] \end{cases}$$

$$\iff \begin{cases} r = 2^{1/n} \\ \exists k \in [0, n-1] / \theta \equiv \frac{2k\pi}{n} \quad [2\pi] \end{cases}$$

$$\iff \exists k \in [0, n-1] / z = 2^{1/n} e^{i2k\pi/n}.$$

- **b.** Résolvons l'équation matricielle $M^n = T$, d'inconnue $M \in \mathcal{M}_3(\mathbb{C})$, par analyse-synthèse.
 - Analyse: supposons que Mⁿ = T.
 Les résultats de la question 4 s'appliquent.
 D'après les questions 4b et 4c, la matrice M s'écrit :

$$M = \begin{pmatrix} \alpha & 0_{1,2} \\ 0_{2,1} & Y \end{pmatrix}$$
 pour $Y = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, où $\alpha, a, b \in \mathbb{C}$.

Comme $M^n = T$, en calculant par bloc :

$$\begin{pmatrix} \alpha^n & 0_{1,2} \\ 0_{2,1} & Y^n \end{pmatrix} = \begin{pmatrix} 2 & 0_{1,2} \\ 0_{2,1} & U \end{pmatrix} \quad \text{donc} \quad \begin{cases} \alpha^n = 2 \\ Y^n = U. \end{cases}$$

Ainsi α est une racine n^e de 2, et d'après la question 4d :

$$\begin{pmatrix} a^n & n a^{n-1} b \\ 0 & a^n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

On en tire que a est une racine n^e de l'unité, et que b se déduit de n et a par la relation $b=\frac{1}{n\,a^{n-1}}$. En conclusion, nécessairement :

$$\exists (k,\ell) \in [0, n-1]^2 / M = \begin{pmatrix} 2^{1/n} \omega_k & 0 & 0 \\ 0 & \omega_\ell & \frac{1}{n} \omega_\ell^{-(n-1)} \\ 0 & 0 & \omega_\ell \end{pmatrix}.$$

• **Synthèse** : si l'on considère une matrice *M* de la forme ci-dessus, c'est-à-dire :

$$M = \begin{pmatrix} 2^{1/n} \, \omega_k & 0_{1,2} \\ 0_{2,1} & \omega_\ell \, I_2 + \frac{1}{n} \, \omega_\ell^{-(n-1)} J \end{pmatrix},$$

on peut calculer M^n par blocs :

$$\begin{split} M^n &= \begin{pmatrix} \left(2^{1/n} \, \omega_k\right)^n & 0_{1,2} \\ 0_{2,1} & \left(\omega_\ell \, \mathrm{I}_2 + \frac{1}{n} \, \omega_\ell^{-(n-1)} J\right)^n \end{pmatrix} \\ &= \begin{pmatrix} 2 \, \omega_k^n & 0_{1,2} \\ 0_{2,1} & \omega_\ell^n \, \mathrm{I}_2 + n \, \omega_{(n-1)\ell} \times \frac{1}{n} \, \omega_\ell^{-(n-1)} J \end{pmatrix} \\ &= \begin{pmatrix} 2 & 0_{1,2} \\ 0_{2,1} & \mathrm{I}_2 + J \end{pmatrix} \\ &= T. \end{split}$$

Conclusion : Les racines n^e de la matrice T sont les matrices

$$M_{k,\ell} := egin{pmatrix} 2^{1/n} \, \omega_k & 0 & 0 \\ 0 & \omega_\ell & rac{1}{n} \, \omega_\ell^{-(n-1)} \\ 0 & 0 & \omega_\ell \end{pmatrix} \quad ext{pour} \, (k,\ell) \in \llbracket 0, \, n-1
rbracket^2.$$

Elles sont toutes distinctes car le couple formé par les deux premiers coefficients diagonaux est différent pour chaque valeur du couple (k, ℓ) . La matrice T admet donc exactement n^2 racines n^e distinctes.

c. Soit $R \in \mathcal{M}_3(\mathbb{C})$ quelconque. On reprend la matrice $P = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ -1 & -1 & 0 \end{pmatrix}$ de la question 3c, pour laquelle $A = PTP^{-1}$, et on pose $M := P^{-1}RP$, de sorte que :

$$R^{n} = A \iff (P M P^{-1})^{n} = P T P^{-1}$$

$$\iff P M^{n} P^{-1} = P T P^{-1}$$

$$\iff M^{n} = T$$

$$\iff \exists (k, \ell) \in [0, n-1]^{2} / M = M_{k,\ell}$$

$$\iff \exists (k, \ell) \in [0, n-1]^{2} / R = P M_{k,\ell} P^{-1}.$$

Conclusion : Les racines n^e de la matrice A sont donc les matrices :

$$R_{k,\ell} := P \begin{pmatrix} 2^{1/n} \, \omega_k & 0 & 0 \\ 0 & \omega_\ell & \frac{1}{n} \, \omega_\ell^{-(n-1)} \\ 0 & 0 & \omega_\ell \end{pmatrix} P^{-1} \quad \text{pour} \, (k,\ell) \in [0, n-1]^2.$$

d. Soit $(k,\ell) \in [0, n-1]^2$ quelconque. Soulignons que la matrice P est à coefficients réels, et remarquons que les racines n^e de l'unité s'écrivent ω^k pour $\omega = \exp(i 2\pi/n)$. On a :

$$\begin{split} R_{k,\ell} &\in \mathcal{M}_3(\mathbb{R}) &\iff \overline{R_{k,\ell}} = R_{k,\ell} \iff \overline{P\,M_{k,\ell}\,P^{-1}} = P\,M_{k,\ell}\,P^{-1} \\ &\iff P\,\overline{M_{k,\ell}}\,P^{-1} = P\,M_{k,\ell}\,P^{-1} \iff \overline{M_{k,\ell}} = M_{k,\ell} \\ &\iff \begin{cases} 2^{1/n}\,\overline{\omega^k} = 2^{1/n}\,\omega^k \\ \overline{\omega^\ell} = \omega^\ell \\ \frac{1}{n}\,\overline{\omega^{-(n-1)\ell}} = \frac{1}{n}\,\omega^{-(n-1)\ell}. \\ &\iff \omega^{-k} = \omega^k, \quad \omega^{-\ell} = \omega^\ell, \quad \omega^{(n-1)\ell} = \omega^{-(n-1)\ell} \\ &\iff \omega^{2k} = 1, \quad \omega^{2\ell} = 1, \quad \omega^{2(n-1)\ell} = 1. \end{split}$$

Or: $\omega^j = 1$ si et seulement si j est un multiple de n; si 2k et 2ℓ sont des multiples de n, c'est automatiquement le cas pour $2(n-1)\ell$ aussi.

Puisque 2k est dans [0, 2n-2], c'est un multiple de n si et seulement si k=0 ou k=n/2 (ce dernier cas ne se produit que si n est pair, et dans ce cas $\omega^k=-1$); même chose pour ℓ .

Conclusion : Si n est impair, la matrice A admet une seule racine n^e à coefficients réels :

$$R_{0,0} = P \begin{pmatrix} 2^{1/n} & 0 & 0 \\ 0 & 1 & \frac{1}{n} \\ 0 & 0 & 1 \end{pmatrix} P^{-1}.$$

Si n est pair, la matrice A admet 4 racines n^e à coefficients réels :

$$\begin{split} R_{0,0} &= P \begin{pmatrix} 2^{1/n} & 0 & 0 \\ 0 & 1 & \frac{1}{n} \\ 0 & 0 & 1 \end{pmatrix} P^{-1}, \qquad R_{0,n/2} = P \begin{pmatrix} 2^{1/n} & 0 & 0 \\ 0 & -1 & \frac{(-1)^{n+1}}{n} \\ 0 & 0 & -1 \end{pmatrix} P^{-1}, \\ R_{n/2,0} &= P \begin{pmatrix} -2^{1/n} & 0 & 0 \\ 0 & 1 & \frac{1}{n} \\ 0 & 0 & 1 \end{pmatrix} P^{-1}, \quad R_{n/2,n/2} = P \begin{pmatrix} -2^{1/n} & 0 & 0 \\ 0 & -1 & \frac{(-1)^{n+1}}{n} \\ 0 & 0 & -1 \end{pmatrix} P^{-1}. \end{split}$$

d'après E3A PSI 2020

Exercice 2

Étude de la somme d'une série alternée de fonctions

Pour tout entier naturel n, on considère la fonction f_n définie par :

$$f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{(-1)^n}{\sqrt{1+nx}}.$$

- 1) Convergence simple Soit $x \in \mathbb{R}_+$ fixé.
 - 1^{er} cas : si x > 0.
 - * La suite $(f_n(x))_{n \ge 0} = ((-1)^n / \sqrt{1 + nx})_{n \ge 0}$ est alternée car, pour tout $n \in \mathbb{N}$, $1/\sqrt{1 + nx} \ge 0$;
 - * La suite $(1/\sqrt{1+nx})_{n\geq 0}$ est décroissante est tend vers 0.

Par le critère spécial des séries alternées (CSSA), la série $\sum_{n\geqslant 0}f_n(x)$ est convergente.

• $2^e \cos : \sin x = 0$. La suite $(f_n(0))_{n \ge 0} = ((-1)^n)_{n \ge 0}$ ne tend pas vers 0, donc la série $\sum_{n \ge 0} f_n(0)$ diverge grossièrement. **Conclusion :** La série $\sum_{n\geqslant 0} f_n$ converge simplement sur l'intervalle $I\coloneqq]0,+\infty[$.

On note alors *S* la somme sur *I* de cette série de fonctions.

- 2) Convergence normale et uniforme
 - **a.** Soit $a, b \in \mathbb{R}$ tels que 0 < a < b. Fixons $n \in \mathbb{N}$:

$$\forall x \in [a, b], |f_n(x)| = \frac{1}{\sqrt{1 + nx}}, \text{ mais } 1 + nx \ge 1 + na > 0$$

donc en appliquant $t \mapsto 1/\sqrt{t}$, décroissante sur \mathbb{R}^* :

$$\forall x \in [a, b], \quad |f_n(x)| \le \frac{1}{\sqrt{1+na}}.$$

Comme, de plus, il y a égalité pour $x = a \in [a, b]$, on en déduit :

$$||f_n||_{\infty}^{[a,b]} = \frac{1}{\sqrt{1+na}}.$$

(On aurait également pu procéder par étude de fonction.)

- **b.** La série $\sum_{n\geqslant 0} \|f_n\|_{\infty}^{[a,b]} = \sum_{n\geqslant 0} \frac{1}{\sqrt{1+n\,a}}$ est divergente car :
 - * $\frac{1}{\sqrt{1+na}} \sim \frac{1}{\sqrt{na}}$;
 - * $\forall n \ge 1, \frac{1}{\sqrt{na}} \ge 0$;
 - * La série $\sum_{n\geqslant 1}\frac{1}{\sqrt{na}}$ est divergente (multiple de série de Riemann d'exposant $\alpha=1/2\leqslant 1$).

La série $\sum_{n=0}^{\infty} f_n$ ne converge donc pas normalement sur [a, b].

- Puisque $\mathbb{R}_{+}^{*} \supset [a, b]$, $\|f_n\|_{\infty}^{\mathbb{R}_{+}^{*}} \ge \|f_n\|_{\infty}^{[a, b]}$ pour tout $n \in \mathbb{N}$. La série $\sum_{n\geq 0}^{\infty} \|f_n\|_{\infty}^{\mathbb{R}_+^*}$ est donc également divergente : la série $\sum_{n\geq 0} f_n$ ne converge donc pas non plus normalement sur IR*.
- **c.** La série $\sum f_n$ converge simplement sur \mathbb{R}_+^* .

Notons $(R_n)_{n\geq 0}$ la suite de ses restes sur cet intervalle.

Pour prouver la convergence uniforme de $\sum_{n\geqslant 0} f_n$ sur tout segment de \mathbb{R}_+^* , on montre que ses restes convergent uniformément sur ces segments vers la fonction nulle. Fixons un segment $[a, b] \subset \mathbb{R}^*_{\perp}$ et un entier $n \in \mathbb{N}$:

$$\forall x \in [a, b], \quad |R_n(x)| = \left| \sum_{k=n+1}^{\infty} \frac{(-1)^k}{\sqrt{1+kx}} \right|$$

$$\leqslant \left| \frac{(-1)^{n+1}}{\sqrt{1+(n+1)x}} \right| \quad \text{(par le CSSA)}$$

$$= \frac{1}{\sqrt{1+(n+1)x}}$$

$$\leqslant \frac{1}{\sqrt{1+(n+1)a}}, \quad \text{indépendant de x, donc:}$$

$$\forall \, n \in \mathbb{N}, \quad \|R_n\|_{\infty}^{[a,b]} \leqslant \frac{1}{\sqrt{1+(n+1)a}}.$$

Puisque a > 0, $\frac{1}{\sqrt{1+(n+1)a}} \xrightarrow[n \to \infty]{} 0$ donc par le théorème d'encadrement, la suite $(R_n)_{n \ge 0}$ converge uniformément sur [a,b] vers la fonction

Conclusion : Cela prouve que la série $\sum_{n\geqslant 0}f_n$ converge uniformément sur tout segment de \mathbb{R}_+^* .

3) Limite de S en $+\infty$

Appliquons le théorème de sommation de limites à la série $\sum_{n\geq 0} f_n$ au voisinage

* Fixons $n \in \mathbb{N}$:

$$\forall x > 0, \quad f_n(x) = \frac{(-1)^n}{\sqrt{1+nx}} \xrightarrow[x \to +\infty]{} \begin{cases} 1 & \text{si } n = 0, \\ 0 & \text{si } n \ge 1. \end{cases}$$
 (limites **finies**)

* On a vu que la série $\sum\limits_{n\geqslant 0}f_n$ convergeait uniformément sur tout segment $[a, b] \subset \mathbb{R}^*_+$, ce qui n'est pas suffisant pour appliquer ce théorème. Toutefois, la preuve faite dans la question 2c ne fait pas intervenir la borne bdu segment : on montre de la même manière que $\|R_n\|_{\infty}^{[1,\infty[} \le \frac{1}{\sqrt{n+1}}$, et donc que $\sum_{n\geqslant 0} f_n$ converge uniformément sur $J:=[1,+\infty[$.

Le théorème s'applique sur l'intervalle J et on obtient :

$$\lim_{x \to +\infty} S(x) = \sum_{n=0}^{\infty} \lim_{x \to +\infty} f_n(x) = 1 + 0 + 0 + \dots = 1.$$

4) Développement asymptotique au voisinage de $+\infty$ Pour $n \in \mathbb{N}^*$, on note $u_n = \frac{(-1)^n}{\sqrt{n}}$ et $v_n = \frac{(-1)^n}{n\sqrt{n}}$.

a. Puisque :
$$\sum_{n \ge 1} |u_n| = \sum_{n \ge 1} \frac{1}{\sqrt{n}} \quad \text{et} \quad \sum_{n \ge 1} |v_n| = \sum_{n \ge 1} \frac{1}{n^{3/2}},$$

séries de Riemann respectivement divergente et convergente, la série $\sum_{n\geqslant 1}u_n$ n'est pas absolument convergente, mais $\sum_{n\geqslant 1}v_n$ l'est (et elle est donc convergente). Enfin, $\sum_{n\geqslant 1}u_n$ est convergente par le CSSA.

Conclusion : $\sum_{n\geqslant 1}u_n$ est semi-convergente, tandis que $\sum_{n\geqslant 1}v_n$ est absolument convergente.

b. On a:
$$\frac{1}{\sqrt{1+h}} = (1+h)^{-1/2} = 1 - \frac{1}{2}h + \frac{\left(-\frac{1}{2}\right) \times \left(-\frac{3}{2}\right)}{2}h^2 + o(h^2)$$
$$= 1 - \frac{1}{2}h + \frac{3}{8}h^2 + o(h^2).$$

c. D'après le développement limité qui précède, il existe une fonction ε : $[0, +\infty[\rightarrow \mathbb{R}$ telle que :

$$\forall h \ge 0$$
, $\frac{1}{\sqrt{1+h}} = 1 - \frac{1}{2}h + \frac{3}{8}h^2 + h^2\varepsilon(h)$ et $\varepsilon(h) \xrightarrow[h \to 0]{} 0$

Posons: $\forall h > 0$, $\varphi_0(h) = \frac{1}{h^2} \times \left(\frac{1}{\sqrt{1+h}} - 1 + \frac{1}{2}h\right)$. de sorte que :

$$\forall h > 0, \quad \frac{1}{\sqrt{1+h}} = 1 - \frac{1}{2}h + h^2 \varphi_0(h).$$
 (*)

La fonction φ_0 est continue sur $]0,+\infty[$, et :

$$\forall h > 0$$
, $\varphi(h) = \frac{3}{8} + \varepsilon(h) \xrightarrow[h \to 0^+]{} \frac{3}{8}$, limite finie.

On peut donc prolonger φ_0 par continuité en 0 : on pose

$$\varphi(h) = \begin{cases} \varphi_0(h) & \text{si } h > 0, \\ \frac{3}{8} & \text{si } h = 0. \end{cases}$$

La fonction φ obtenue est alors continue sur $[0, +\infty[$. De plus :

$$\varphi(h) \underset{h \to +\infty}{\sim} \frac{1}{h^2} \times \frac{1}{2} h = \frac{1}{2h} \xrightarrow[h \to +\infty]{} 0.$$

La fonction φ est continue sur $[0,+\infty[$ et admet une limite finie aux deux extrémités de l'intervalle : l'intuition dit que φ sera bornée sur $[0,+\infty[$ pour cette raison. Montrons-le :

* Comme $\lim_{\substack{+\infty \\ +\infty}} (\varphi) = 0$, il existe un intervalle $[x_0, +\infty[$ et un majorant $M_1 \in \mathbb{R}$ tels que $|\varphi| \leq M_1$ sur $[x_0, +\infty[$.

* Sur le <u>segment</u> $[0, x_0]$, la fonction φ est continue, donc par le théorème des bornes atteintes, φ y est bornée (et atteint ses bornes) : il existe $M_2 \in \mathbb{R}$ tel que $|\varphi| \leq M_2$ sur $[0, x_0]$.

En posant $M := \max(M_1, M_2)$, on obtient que $|\varphi| \le M$ sur $[0, +\infty[: \varphi \text{ est une fonction bornée sur } \mathbb{R}_+$.

Enfin, pour tous $n \in \mathbb{N}^*$ et $x \ge 1$, on a $\frac{1}{nx} > 0$. Puisque $\varphi = \varphi_0$ sur $]0,+\infty[$, d'après (*) avec $x \leftarrow \frac{1}{nx}$:

$$\frac{1}{\sqrt{1+\frac{1}{nx}}} = 1 - \frac{1}{2(nx)} + \frac{1}{(nx)^2} \varphi\left(\frac{1}{nx}\right).$$

d. Partons de la définition de S(x):

$$\forall x > 0, \quad S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{1+nx}} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{1+nx}} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{nx} \times \sqrt{1+\frac{1}{nx}}}$$

$$= 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{nx}} \times \left[1 - \frac{1}{2(nx)} + \frac{1}{(nx)^2} \varphi\left(\frac{1}{nx}\right)\right]$$

$$= 1 + \sum_{n=1}^{\infty} \left[\frac{(-1)^n}{\sqrt{nx}} - \underbrace{\frac{(-1)^n}{2(nx)^{3/2}}}_{y(x)} + \underbrace{\frac{(-1)^n}{(nx)^{5/2}}}_{y(x)} \varphi\left(\frac{1}{nx}\right)\right].$$

À x > 0 fixé, les trois séries $\sum_{n \ge 1} u_n(x)$, $\sum_{n \ge 1} v_n(x)$ et $\sum_{n \ge 1} w_n(x)$ sont conver-

gentes : la première par le CSSA, la seconde car elle est en $O(1/n^{3/2})$ et la troisième car elle est en $O(1/n^{5/2})$ puisque φ est une fonction bornée. Par linéarité de la sommation, on obtient :

$$\forall x > 0, \quad S(x) = 1 + \frac{1}{\sqrt{x}} \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} - \frac{1}{x\sqrt{x}} \sum_{n=1}^{\infty} \frac{(-1)^n}{2 n^{3/2}} + \frac{1}{x^{5/2}} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{5/2}} \varphi\left(\frac{1}{nx}\right).$$

La fonction φ étant bornée sur \mathbb{R}_+ , on a $\|\varphi\|_{\infty}^{\mathbb{R}_+} < +\infty$ et:

$$\forall x > 0, \quad \left| \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{5/2}} \varphi\left(\frac{1}{nx}\right) \right| \leq \sum_{n=1}^{\infty} \frac{\|\varphi\|_{\infty}^{\|R_+}}{n^{5/2}}, \quad \text{indépendant de } x.$$

Cela prouve que le dernier terme du développement asymptotique est un $O(1/x^{5/2})$.

Conclusion : On a démontré que :

$$S(x) = 1 + \frac{\beta}{\sqrt{x}} + \frac{\gamma}{x\sqrt{x}} + O\left(\frac{1}{x^{5/2}}\right) \quad \text{où} \quad \beta \coloneqq \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \text{ et } \gamma \coloneqq -\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/2}}.$$