CORRIGÉ DU DM4 (Suites et séries de fonctions)

Problème 1 Sujet inspiré CCINP MP

- 1. Le cours donne les implications suivantes :
 - 1. $\left[\sum f_n \text{ converge uniformément sur } I\right] \stackrel{\text{Théorème 15}}{\Leftarrow} \left[\sum f_n \text{ converge normalement sur } I\right]$
 - 2. $\left[\sum f_n \text{ converge uniformément sur } I\right] \overset{\text{Proposition 10}}{\Rightarrow} \left[\sum f_n \text{ converge simplement sur } I\right]$
 - 3. $\left[\sum f_n \text{ converge absolument sur } I\right] \stackrel{\text{Proposition } 14}{\Leftarrow} \left[\sum f_n \text{ converge normalement sur } I\right]$
 - 4. $\left[\sum f_n \text{ converge absolument sur } I\right] \Rightarrow \left[\sum f_n \text{ converge simplement sur } I\right]$ par le Théorème 14 du cours SÉRIES NUMÉRIQUES en travaillant avec $x \in I$ quelconque fixé.
- **2.(a)** Soit $n \in \mathbb{N}$. Soit $x \in \mathbb{R}$. On a par inégalité triangulaire :

$$|f_n(x)| \le \left|\frac{\cos(nx)}{2^n}\right| + \left|\frac{\sin(nx)}{3^n}\right| \le \frac{1}{2^n} + \frac{1}{3^n}$$
 (ne dépend pas de x).

On en déduit que $\frac{1}{2^n} + \frac{1}{3^n}$ est un majorant de l'ensemble $\{|f_n(x)|, x \in \mathbb{R}\}$ et $||f_n||_{\infty}^{\mathbb{R}}$ est le plus petit majorant de cet ensemble

On en déduit que pour tout $n \in \mathbb{N}$, $0 \le ||f_n||_{\infty}^{\mathbb{R}} \le \frac{1}{2^n} + \frac{1}{3^n}$.

De plus, les séries géométriques $\sum \left(\frac{1}{2}\right)^n$ et $\sum \left(\frac{1}{3}\right)^n$ convergent car $\left|\frac{1}{2}\right| < 1$ et $\left|\frac{1}{3}\right| < 1$. Par linéarité, on obtient que la série $\sum \left(\frac{1}{2^n} + \frac{1}{3^n}\right)$ converge.

Par comparaison par inégalité, on en déduit que la série $\sum \|f_n\|_{\infty}^{\mathbb{R}}$ converge ce qui signifie que la série $\sum f_n$ converge normalement sur \mathbb{R} . En utilisant les résultats établis à la question 1, on en déduit que :

la série
$$\sum f_n$$
 converge normalement sur $\mathbb R$

donc elle converge aussi uniformément, absolument et simplement sur \mathbb{R} .

La série $\sum_{n\geqslant 0} f_n(0) = \sum_{n\geqslant 0} \frac{1}{n+1} = \sum_{n\geqslant 1} \frac{1}{n}$ diverge (série harmonique) donc la série $\sum f_n$ ne converge pas simplement sur \mathbb{R} .

En utilisant les résultats établis à la question 1, on en déduit que :

la série
$$\sum f_n$$
 ne converge pas simplement sur $\mathbb R$

donc elle ne converge ni absolument, ni uniformément, ni normalement sur \mathbb{R} .

3.(a) Soit $x \in [0,1]$.

La série numérique $\sum_{n\geq 1} f_n(x)$ est une série alternée car pour tout $n \in \mathbb{N}^*$, $\frac{x^2+n}{n^2} \geqslant 0$.

La suite $\left(\frac{x^2}{n^2} + \frac{1}{n}\right)_{n \in \mathbb{N}^*}$ est une suite décroissante et elle converge vers 0.

la série de fonctions
$$\sum_{n\geqslant 1} f_n$$
 converge simplement sur $[0,1]$.

3.(b) Soit $x \in [0,1]$. On a pour tout $n \in \mathbb{N}^*$, $|f_n(x)| = \frac{x^2}{n^2} + \frac{1}{n}$. La série $\sum_{n\geqslant 1} \frac{x^2}{n^2}$ converge (série de Riemann avec 2>1 et constante multiplicative) mais la série $\sum_{n\geqslant 1} \frac{1}{n}$ diverge (série harmonique) donc par somme, la série $\sum_{n=1}^{\infty} |f_n(x)|$ diverge.

Ainsi:

la série
$$\sum_{n\geq 1} f_n(x)$$
 ne converge absolument en aucune valeur x de $[0,1]$.

3.(c) Soit $x \in [0,1]$. Par le critère spécial des séries alternées (dont les hypothèses ont été vérifiées en 3.(a)), on obtient également pour tout $n \in \mathbb{N}$:

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \le |f_{n+1}(x)| = \frac{x^2}{(n+1)^2} + \frac{1}{n+1} \le \frac{1}{(n+1)^2} + \frac{1}{n+1}$$
 (ne dépend pas de x).

Ainsi, $\frac{1}{(n+1)^2} + \frac{1}{n+1}$ est un majorant de l'ensemble $\{|R_n(x)|, x \in [0,1]\}$.

Comme $||R_n||_{\infty}^{[0,1]}$ est le plus petit majorant de cet ensemble, on en déduit que pour tout $n \in \mathbb{N}$:

$$0 \le \|R_n\|_{\infty}^{[0,1]} \le \frac{1}{(n+1)^2} + \frac{1}{n+1}.$$

Comme $\lim_{n\to+\infty} \left(\frac{1}{(n+1)^2} + \frac{1}{n+1}\right) = 0$, on en déduit par le théorème des gendarmes que $\lim_{n\to+\infty} \|R_n\|_{\infty}^{[0,1]} = 0$ ou encore $\lim_{n\to+\infty} \|R_n - \varphi\|_{\infty}^{[0,1]} = 0$ en notant $\varphi: x \mapsto 0$. On a ainsi prouvé que la suite des restes $(R_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,1] vers la fonction

 $\varphi: x \mapsto 0.$

Ainsi:

la série de fonctions
$$\sum_{n\geqslant 1} f_n$$
 converge uniformément sur $[0,1]$.

4.(a) Soit $x \in]-1,1[$. La suite géométrique $(x^n)_{n\in\mathbb{N}}$ converge vers 0 car |x|<1. Ainsi:

la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur] – 1,1[vers la fonction $\varphi: x \mapsto 0$.

4.(b) Soit $n \in \mathbb{N}$. On a par définition, $||f_n - \varphi||_{\infty}^{]-1,1[} = \sup_{x \in]-1,1[} |f_n(x) - \varphi(x)| = \sup_{x \in]-1,1[} |x|^n$. Comme la fonction $x \mapsto |x|^n$ est paire, on a $||f_n - \varphi||_{\infty}^{]-1,1[} = \sup_{x \in [0,1[} x^n$.

Comme la fonction $x \mapsto x^n$ est croissante sur [0,1[, on en déduit (théorème de la limite monotone) que $||f_n - \varphi||_{\infty}^{]-1,1[} = \lim_{x \to 1^-} x^n = 1.$

On en déduit que $\lim_{n\to+\infty} ||f_n - \varphi||_{\infty}^{]-1,1[} = \lim_{n\to+\infty} 1 = 1.$

Comme la suite $(\|f_n - \varphi\|_{\infty}^{]-1,1[})_{n \in \mathbb{N}}$ ne converge pas vers 0, on en déduit que la suite $(f_n)_{n \in \mathbb{N}}$ ne converge pas uniformément sur]-1,1[vers la fonction $\varphi: x \mapsto 0$ et donc :

la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur] – 1, 1[.

4.(c) Soit $x \in]-1,1[$. La série $\sum |f_n(x)| = \sum |x|^n$ converge (série géométrique de raison $|x| \in]-1,1[$). On a ainsi prouvé que:

la série de fonctions
$$\sum f_n$$
 converge absolument sur] – 1,1[.

5. La suite $(\alpha_n)_{n\geq 1}$ est décroissante et positive donc $\forall n \in \mathbb{N}^*, 0 \leq \alpha_n \leq \alpha_1$. Ainsi:

la suite
$$(\alpha_n)_{n\geqslant 1}$$
 est bornée.

Soit $x \in I$. On a pour tout $n \in \mathbb{N}^*$:

$$0 \leqslant \alpha_n x^n (1 - x) \leqslant \alpha_1 x^n.$$

La série $\sum x^n$ converge (série géométrique de raison $x \in]-1,1[$). Par comparaison par inégalité, on en déduit que la série $\sum f_n(x)$ converge. On a ainsi prouvé que:

la série de fonctions
$$\sum f_n$$
 converge simplement sur I .

6.(a) Soit $n \in \mathbb{N}^*$. On a pour tout $x \in I$, $|f_n(x)| = f_n(x)$ puisque $\alpha_n x^n (1-x) \ge 0$. La fonction f_n est dérivable sur I et on a pour tout $x \in I$:

$$f'_n(x) = \alpha_n(nx^{n-1} - (n+1)x^n) = \alpha_n x^{n-1}(n - x(n+1))$$
 du signe de $n - x(n+1)$.

La fonction f_n est donc croissante sur $\left[0, \frac{n}{n+1}\right]$ et décroissante sur $\left[\frac{n}{n+1}, 1\right]$.

On en déduit qu'elle admet sur I un maximum atteint en $\frac{n}{n+1}$ qui vaut $f_n\left(\frac{n}{n+1}\right) = \alpha_n \frac{n^n}{(n+1)^{n+1}}$. Ainsi:

$$||f_n||_{\infty}^I = \alpha_n \frac{n^n}{(n+1)^{n+1}}.$$

6.(b) Soit $n \in \mathbb{N}^*$. On a $||f_n||_{\infty}^I = \alpha_n \frac{n^n}{(n+1)^{n+1}} = \frac{\alpha_n}{n+1} e^{-n\ln(1+\frac{1}{n})}$.

Comme $\lim_{n\to +\infty}\frac{1}{n}=0$, on a $\ln\left(1+\frac{1}{n}\right)\sim\frac{1}{n}$ donc $\lim_{n\to +\infty}n\ln\left(1+\frac{1}{n}\right)=1$. On en déduit que $\lim_{n\to +\infty}e^{-n\ln(1+\frac{1}{n})}=e^{-1}$ par continuité de la fonction exponentielle.

Comme $e^{-1} \neq 0$, on a donc $e^{-n\ln(1+\frac{1}{n})} \sim e^{-1}$ et donc $||f_n||_{\infty}^I \sim \frac{\alpha_n}{ne}$.

De plus, pour tout $n \in \mathbb{N}^*$, $||f_n||_{\infty}^I \ge 0$.

Par comparaison, on en déduit que les séries $\sum_{n\geq 1} \|f_n\|_{\infty}^I$ et $\sum_{n\geq 1} \frac{\alpha_n}{ne}$ sont de même nature.

Ainsi:

la série de fonctions
$$\sum_{n\geqslant 1}f_n$$
 converge normalement sur I si et seulement si la série $\sum_{n\geqslant 1}\frac{\alpha_n}{n}$ converge.

7.(a) Soit $x \in I$. Soit $n \in \mathbb{N}$. Soit $N \in \mathbb{N}$ avec $N \ge n+1$.

Comme $x \neq 1$, on a :

$$\sum_{k=n+1}^{N} x^k = \frac{x^{n+1} - x^{N+1}}{1 - x}.$$

Comme $x \in]-1,1[$, on obtient par passage à la limite :

$$\left| \sum_{k=n+1}^{+\infty} x^k = \frac{x^{n+1}}{1-x} \right|.$$

7.(b) On suppose que la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ converge vers 0.

D'après la question 5., la série de fonctions $\sum f_n$ converge simplement sur I. Montrons que la suite des restes $(R_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction nulle.

Soit $x \in I$. Soit $n \in \mathbb{N}$.

La suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est décroissante donc pour tout $k \ge n+1$, on a $\alpha_k \le \alpha_{n+1}$ donc comme $x^k(1-x) \ge 0$, on a :

$$\alpha_k x^k (1-x) \leqslant \alpha_{n+1} (1-x) x^k.$$

Soit $N \in \mathbb{N}$, $N \ge n+1$. Par croissance (les séries en jeu sont convergentes), on obtient :

$$0 \le R_n(x) = \sum_{k=n+1}^{+\infty} \alpha_k x^k (1-x) \le \alpha_{n+1} (1-x) \sum_{k=n+1}^{+\infty} x^k = \alpha_{n+1} x^{n+1} \le \alpha_{n+1} \text{ (ne dépend pas de } x).$$

Ainsi, α_{n+1} est un majorant de l'ensemble $\{|R_n(x)|, x \in I\}$.

Comme $||R_n||_{\infty}^I$ est le plus petit majorant de cet ensemble, on en déduit que pour tout $n \in \mathbb{N}$:

$$0 \leqslant \|R_n\|_{\infty}^I \leqslant \alpha_{n+1}.$$

Comme $\lim_{n\to+\infty} \alpha_{n+1} = 0$, on en déduit par le théorème de limite par encadrement que $\lim_{n\to+\infty} \|R_n\|_{\infty}^I = 0$. On a donc prouvé que la suite des restes $(R_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction nulle. Ainsi :

si la suite $(\alpha_n)_{n\in\mathbb{N}}$ converge vers 0 alors la série de fonctions $\sum f_n$ converge uniformément sur I.

7.(c) On suppose que la série de fonctions $\sum f_n$ converge uniformément sur I.

La suite $(\alpha_n)_{n \in \mathbb{N}^*}$ est décroissante et minorée (par 0) donc elle converge vers un réel ℓ positif et on a pour tout $k \in \mathbb{N}^*$, $\alpha_k \geqslant \ell$.

Soit $n \in \mathbb{N}$ et $x \in I$. On a alors par croissance (les séries en jeu convergent) :

$$R_n(x) = \sum_{k=n+1}^{+\infty} \alpha_k x^k (1-x) \ge \ell (1-x) \sum_{k=n+1}^{+\infty} x^k = \ell x^{n+1}.$$

On a également $R_n(x) \leq ||R_n||_{\infty}^I$ (car c'est un majorant).

On en déduit que $\ell x^{n+1} \leq ||R_n||_{\infty}^{I}$ (ne dépend pas de x).

Ainsi, $||R_n||_{\infty}^I$ est un majorant de l'ensemble $\{\ell x^{n+1}, x \in I\}$ donc $\sup \ell x^{n+1} \leq ||R_n||_{\infty}^I$.

Or, la fonction $x \mapsto \ell x^{n+1}$ est croissante sur I = [0, 1[donc $\sup_{x \in I} \ell x^{n+1} = \lim_{x \to 1^-} \ell x^{n+1} = \ell.$

On a donc pour tout $n \in \mathbb{N}$, $0 \le \ell \le ||R_n||_{\infty}^I$.

Comme la suite des restes $(R_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction nulle, on a $\lim_{n\to+\infty} \|R_n\|_{\infty}^I = 0$ et on en déduit par passage à la limite que $\ell = 0$.

Ainsi:

si la série de fonctions $\sum f_n$ converge uniformément sur I alors la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0.

8.(a) Pour tout $n \in \mathbb{N}^*$, on pose $\alpha_n = \frac{1}{n}$.

La suite $(\alpha_n)_{n\geqslant 1}$ est décroissante et positive.

La série $\sum_{n\geqslant 1} \frac{\alpha_n}{n} = \sum_{n\geqslant 1} \frac{1}{n^2}$ converge (série de Riemann avec 2>1) donc d'après la question 6.(b), la série $\sum_{n\geqslant 1} f_n$ converge normalement sur I.

Si pour tout $n \in \mathbb{N}^*$, $\alpha = \frac{1}{n}$ alors la série de fonctions $\sum_{n \ge 1} f_n$ converge normalement sur I.

8.(b) Pour tout $n \in \mathbb{N}^*$, on pose $\alpha_n = 1$.

La suite $(\alpha_n)_{n\geqslant 1}$ est décroissante et positive.

Comme elle ne converge pas vers 0, d'après 7.(c), la série de fonctions $\sum f_n$ ne converge pas uniformément sur I.

Si pour tout $n \in \mathbb{N}^*$, $\alpha = 1$ alors la série de fonctions $\sum_{n \ge 1} f_n$ ne converge pas uniformément sur I.

8.(c) On pose $\alpha_1 = \frac{1}{\ln 2}$ et pour tout $n \ge 2$, $\alpha_n = \frac{1}{\ln n}$.

La suite $(\alpha_n)_{n\geqslant 1}$ est décroissante et positive.

Elle converge vers 0 donc d'après 7.(b), la série de fonctions $\sum f_n$ converge uniformément sur I.

Montrons que la série $\sum_{n\geq 1} \frac{\alpha_n}{n} = \sum_{n\geq 2} \frac{1}{n \ln n}$ diverge.

La fonction $x \mapsto \frac{1}{x \ln(x)}$ est continue et décroissante sur $[2, +\infty[$.

Soit $k \in \mathbb{N}$ avec $k \ge 2$. On a alors $\int_k^{k+1} \frac{1}{t \ln t} dt \le \frac{1}{k \ln k}$. Soit $N \in \mathbb{N}, N \ge 3$. En sommant pour k allant de 2 à N-1, on obtient :

$$\sum_{k=0}^{N-1} \frac{1}{k \ln k} \ge \int_2^N \frac{1}{t \ln t} dt = [\ln |\ln t|]_2^N = \ln(\ln N) - \ln(\ln 2)$$

d'où:

$$\sum_{k=2}^{N} \frac{1}{k \ln k} \ge \frac{1}{N \ln N} + \ln(\ln N) - \ln(\ln 2).$$

 $\operatorname{Comme} \lim_{N \to +\infty} \left(\frac{1}{N \ln N} + \ln(\ln N) - \ln(\ln 2) \right) = +\infty, \text{ on en déduit que } \lim_{N \to +\infty} \sum_{k=0}^{N} \frac{1}{k \ln k} = +\infty \text{ par inégalité}.$

Ainsi, la série $\sum \frac{1}{n \ln n}$ diverge.

On en déduit par 6.(b) que la série de fonctions $\sum_{n>1} f_n$ ne converge pas normalement sur I.

Si α_1 = 1 et pour tout $n \ge 2$, $\alpha_n = \frac{1}{\ln n}$ alors la série de fonctions $\sum_{n \ge 1} f_n$ converge uniformément sur I mais elle ne converge pas normalement sur I.

9.(a) La convergence uniforme n'implique pas la convergence normale.

Contre-exemple: La série définie à la question 8.(c) converge uniformément sur I mais ne converge pas normalement sur I.

On a également la série définie à la question 3: elle converge uniformément sur [0,1] d'après 3.(c) mais elle ne converge pas normalement sur [0,1] d'après 3.(b) (puisque sinon elle convergerait absolument sur [0,1]).

9.(b) La convergence simple n'implique pas la convergence uniforme.

Contre-exemple: La série définie à la question 8.(b) converge simplement sur I (d'après la question 5) mais ne converge pas uniformément sur I.

On a également la série définie à la question 4 : elle converge simplement sur] – 1, 1 d'après 4.(c) (puisqu'elle converge absolument sur] – 1, 1[) mais elle ne converge pas uniformément sur] – 1, 1[d'après 4.(b) (car sinon la suite $(f_n)_{n\in\mathbb{N}}$ convergerait uniformément sur]-1,1[).

9.(c) La convergence absolue n'implique pas la convergence normale.

Contre-exemple: La série définie à la question 4 converge absolument sur] – 1,1[(d'après 4.(c))

mais ne converge pas normalement sur] – 1,1[(car elle ne converge pas uniformément d'après 4.(b) puisque la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur] – 1,1[).

9.(d) La convergence simple n'implique pas la convergence absolue.

Contre-exemple: La série définie à la question 3 converge simplement sur [0,1] (d'après 3.(a)) mais ne converge pas absolument sur [0,1] (d'après 3.(b)).

10. La convergence uniforme n'implique pas la convergence absolue.

Contre-exemple: La série définie à la question 3 converge uniformément sur [0,1] (d'après 3.(c)) mais ne converge pas absolument sur [0,1] (d'après 3.(b)).

La convergence absolue n'implique pas la convergence uniforme.

Contre-exemple: La série définie à la question 4 converge absolument sur]-1,1[(d'après 4.(c)) mais ne converge pas uniformément sur]-1,1[(d'après 4.(b)).

Problème 2 (École de l'air PC 2003)

1.(a) Soit $n \in \mathbb{N}^*$. On a $v_n > 0$ et :

$$\frac{v_{n+1}}{v_n} = \frac{\sqrt{n+1}}{\sqrt{n}} \frac{u_{n+1}}{u_n} = \frac{\sqrt{n+1}}{\sqrt{n}} \frac{2n+1}{2(n+1)} = \frac{n+\frac{1}{2}}{\sqrt{n(n+1)}} \ge 1$$

car $(n + \frac{1}{2})^2 = n^2 + n + \frac{1}{4} \ge \sqrt{n^2 + n^2}$ avec $n + \frac{1}{2} \ge 0$ et $\sqrt{n(n+1)} > 0$. On a donc $v_{n+1} \ge v_n$.

Ainsi:

la suite $(v_n)_{n\in\mathbb{N}^*}$ est croissante.

1.(b) Soit $n \in \mathbb{N}^*$. On a :

$$w_n = \ln\left(\frac{v_{n+1}}{v_n}\right) = \ln\left(\sqrt{1 + \frac{1}{n}}\left(1 + \frac{1}{2n}\right)\frac{1}{1 + \frac{1}{n}}\right)$$

$$= \frac{1}{2}\ln\left(1 + \frac{1}{n}\right) + \ln\left(1 + \frac{1}{2n}\right) - \ln\left(1 + \frac{1}{n}\right) = -\frac{1}{2}\ln\left(1 + \frac{1}{n}\right) + \ln\left(1 + \frac{1}{2n}\right)$$

$$= -\frac{1}{2}\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) + \frac{1}{2n} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)$$

$$= \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right) \sim \frac{1}{8n^2}.$$

Pour tout $n \in \mathbb{N}^*$, on a $\frac{1}{8n^2} \ge 0$ et la série de Riemann $\sum \frac{1}{n^2}$ converge (2 > 1). Par comparaison, on en déduit :

la série
$$\sum_{n\geqslant 1} w_n$$
 converge.

1.(c) La série télescopique $\sum w_n = \sum (\ln(v_{n+1}) - \ln(v_n))$ converge donc la suite $(\ln(v_n))_{n \in \mathbb{N}^*}$ converge vers un réel α .

Par continuité de la fonction exponentielle sur \mathbb{R} , on en déduit :

la suite
$$(v_n)_{n \in \mathbb{N}^*}$$
 converge vers $L = e^{\alpha}$.

Comme la suite $(v_n)_{n\in\mathbb{N}^*}$ est croissante, on a pour tout $n\in\mathbb{N}^*$, $v_n\leqslant L$ donc $u_n\leqslant\frac{L}{\sqrt{n}}$.

Notons de plus qu'on a $v_n \sim L$ car $L \neq 0$. Par suite, $u_n \sim \frac{L}{\sqrt{n}}$.

On a pour tout
$$n \in \mathbb{N}^*$$
, $u_n \leqslant \frac{L}{\sqrt{n}}$ et de plus, $u_n \sim \frac{L}{\sqrt{n}}$.

2.(a) La fonction $x \mapsto 1 - x$ est de classe \mathscr{C}^{∞} sur [0,1] à valeurs dans \mathbb{R}_{+}^{*} et la fonction racine carrée est de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} . Par composition, on en déduit que la fonction φ est de classe \mathscr{C}^{∞} sur [0,1]. On a pour tout $x \in [0,1[$:

$$\varphi'(x) = -\frac{1}{2}(1-x)^{-1/2} \ , \ \varphi''(x) = -\frac{1}{2}\frac{1}{2}(1-x)^{-3/2} \ ; \ \varphi^{(3)}(x) = -\frac{1}{2}\frac{1}{2}\frac{3}{2}(1-x)^{-5/2} \ , \ \varphi^{(4)}(x) = -\frac{1}{2}\frac{1}{2}\frac{3}{2}\frac{5}{2}(1-x)^{-7/2}$$

Par récurrence immédiate, on montre que pour tout $n \in \mathbb{N}, n \ge 2$:

$$\varphi^{(n)}(x) = -\frac{1}{2} \frac{1}{2} \frac{3}{2} \cdots \frac{2n-3}{2} (1-x)^{-(2n-1)/2} = -\frac{1}{2} \prod_{k=1}^{n-1} \frac{2k-1}{2} (1-x)^{-(2n-1)/2}$$
$$= -\frac{(n-1)!}{2} \prod_{k=1}^{n-1} \frac{2k-1}{2k} (1-x)^{-(2n-1)/2} = -\frac{(n-1)! u_{n-1}}{2} (1-x)^{-(2n-1)/2}.$$

Ainsi:

pour tout
$$x \in [0, 1[, \varphi'(x) = -\frac{1}{2}(1-x)^{-1/2}]$$
 et pour tout $n \ge 2$, $\varphi^{(n)}(x) = -\frac{(n-1)!u_{n-1}}{2}(1-x)^{-(2n-1)/2}$.

2.(b) Soit $n \in \mathbb{N}$. Notons a_0, \dots, a_n les coefficients de P_n . On a pour tout $k \in [0, n]$, $a_k = \frac{\varphi^{(k)}(0)}{k!}$ donc $a_0 = 1$, $a_1 = -\frac{1}{2}$ et pour tout $k \ge 2$, $a_k = -\frac{(k-1)!u_{k-1}}{2(k!)} = -\frac{u_{k-1}}{2k}$.

On a
$$a_0 = 1$$
, $a_1 = -\frac{1}{2}$ et pour tout $k \in [2, n]$, $a_k = -\frac{u_{k-1}}{2k}$.

On obtient par le calcul:

$$P_4 = 1 - \frac{1}{2}x - \frac{u_1}{4}x^2 - \frac{u_2}{6}x^3 - \frac{u_3}{8}x^4 = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{128}x^4.$$

2.(c) Soit $n \in \mathbb{N}^*$. Soit $x \in [0, 1[$.

On a
$$R_n(x) = \frac{1}{n!} \int_0^x (x-t)^n \varphi^{(n+1)}(t) dt = -\frac{u_n}{2} \int_0^x (x-t)^n (1-t)^{-(2n+1)/2} dt$$
.

On a pour tout $t \in [0, x]$

$$0 \le (x-t)^n (1-t)^{-(2n+1)/2} \le (1-t)^n (1-t)^{-(2n+1)/2} = (1-t)^{-1/2}.$$

Par croissance de l'intégrale (avec $0 \le x$), on en déduit :

$$0 \le \int_0^x (x-t)^n (1-t)^{-(2n+1)/2} dt \le \int_0^x (1-t)^{-1/2} dt.$$

Ainsi:

$$\forall x \in [0, 1[, |R_n(x)| = \frac{u_n}{2} \int_0^x (x - t)^n (1 - t)^{-(2n+1)/2} dt \le \frac{u_n}{2} \int_0^x (1 - t)^{-1/2} dt.$$

On a:

$$\int_0^x (1-t)^{-1/2} dt = \left[-2\sqrt{1-t} \right]_0^x = 2(1-\sqrt{1-x}) \le 2.$$

Ainsi:

$$\forall x \in [0, 1[, |R_n(x)| \leq u_n.$$

2.(d) Soit $n \in \mathbb{N}^*$.

Les fonctions φ et P_n sont continues en 1 donc la fonction $R_n = \varphi - P_n$ est prolongeable par continuité en 1.

En passant à la limite $x \to 1$ dans l'inégalité précédente, on obtient $|R_n(1)| \le u_n$.

On a donc pour tout $x \in [0,1], |R_n(x)| \leq u_n$.

Comme u_n ne dépend pas de x, on en déduit que u_n est un majorant de l'ensemble { $|R_n(x)|, x \in [0,1]$ }.

Puisque $||R_n||_{\infty}^{[0,1]}$ est le plus petit de ses majorants, on en déduit $||R_n||_{\infty}^{[0,1]} \le u_n$.

On a ainsi pour tout $n \in \mathbb{N}^*$, $0 \le ||R_n||_{\infty}^{[0,1]} \le u_n$.

On a d'après 1.(c), $u_n \sim \frac{L}{\sqrt{n}}$ donc $\lim_{n \to +\infty} u_n = 0$.

On en déduit par encadrement :

$$\lim_{n \to +\infty} \|R_n\|_{\infty}^{[0,1]} = \lim_{n \to +\infty} \|P_n - \varphi\|_{\infty}^{[0,1]} = 0.$$

Ainsi:

la suite de fonctions polynômiales $(P_n)_{n\in\mathbb{N}^*}$ converge uniformément sur [0,1] vers la fonction φ .

2.(e) Notons qu'on a pour tout $n \in \mathbb{N}^*$ et pour tout $y \in [0,1]$:

$$|\varphi(y) - P_n(y)| = |R_n(y)| \le ||R_n||_{\infty}^{[0,1]} \le u_n \le \frac{L}{\sqrt{n}}.$$

Soit N un entier vérifiant $N \geqslant \frac{L^2 M^2}{\varepsilon^2}$.

On a $\frac{L}{\sqrt{N}} \leqslant \frac{\varepsilon}{M}$ donc pour tout $y \in [0,1]$, on a $|\varphi(y) - P_N(y)| \leqslant \frac{\varepsilon}{M}$.

Soit $x \in [-1,1]$. En appliquant cette inégalité à $y = 1 - x^2 \in [0,1]$, comme $\varphi(1-x^2) = \sqrt{x^2} = |x|$ et $P_N(1-x^2) = Q_N(x)$, on obtient $||x| - Q_N(x)| \leq \frac{\varepsilon}{M}$.

Si N vérifie
$$N \ge \frac{L^2 M^2}{\varepsilon^2}$$
 alors pour tout $x \in [-1, 1]$, on a $||x| - Q_N(x)| \le \frac{\varepsilon}{M}$.

3.(a) Soit $k \in \mathbb{N}$ avec $0 \le k \le n-1$.

La fonction g est affine sur l'intervalle [k/n, (k+1)/n].

Ainsi, il existe deux réels α et β tels que pour tout $x \in [k/n, (k+1)/n], g(x) = \alpha x + \beta$.

On a $g(\frac{k}{n}) = f(\frac{k}{n})$ et $g(\frac{k+1}{n}) = f(\frac{k+1}{n})$. Les réels α et β vérifient donc $f(\frac{k}{n}) = \alpha \frac{k}{n} + \beta$ (1) et $f(\frac{k+1}{n}) = \alpha \frac{k+1}{n} + \beta$ (2).

(2)-(1) donne $\frac{\alpha}{n} = f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right)$ d'où $\alpha = n\left(f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right)\right)$.

Par suite, $\beta = f\left(\frac{k}{n}\right) - n\left(f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right)\right) \frac{k}{n} = (1+k)f\left(\frac{k}{n}\right) - kf\left(\frac{k+1}{n}\right)$.

Ainsi:

lorsque
$$\frac{k}{n} \le x \le \frac{k+1}{n}$$
, on a $g(x) = n\left(f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right)\right)x + (1+k)f\left(\frac{k}{n}\right) - kf\left(\frac{k+1}{n}\right) = (1+k-nx)f\left(\frac{k}{n}\right) + (nx-k)f\left(\frac{k+1}{n}\right)$.

3.(b) Soit $x \in [0, 1]$.

Si nx est un entier alors g(x) = f(x) donc on a $|g(x) - f(x)| = 0 < \varepsilon$.

On suppose désormais que nx n'est pas un entier et on pose $k = \lfloor nx \rfloor$

L'entier k vérifie $0 \le k \le n-1$ et on a $\frac{k}{n} < x < \frac{k+1}{n}$.

On a alors d'après la question précédente, $g(x) = (1 + k - nx)f(\frac{k}{n}) + (nx - k)f(\frac{k+1}{n})$.

On constate par ailleurs que f(x) = (1 + k - nx)f(x) + (nx - k)f(x).

Par suite, on a:

$$|g(x) - f(x)| = \left| (1 + k - nx) \left(f\left(\frac{k}{n}\right) - f(x) \right) + (nx - k) \left(f\left(\frac{k+1}{n}\right) - f(x) \right) \right|$$

$$\leq (1 + k - nx) \left| f\left(\frac{k}{n}\right) - f(x) \right| + (nx - k) \left| f\left(\frac{k+1}{n}\right) - f(x) \right|$$

$$< (1 + k - nx)\varepsilon + (nx - k)\varepsilon = \varepsilon$$

 $\operatorname{car} \, |x - \tfrac{k}{n}| < \tfrac{1}{n} \, \operatorname{et} \, |x - \tfrac{k+1}{n}| < \tfrac{1}{n}.$

Ainsi:

pour tout
$$x \in [0,1]$$
, $|g(x) - f(x)| < \varepsilon$.

4.(a) Soit $(g,h) \in E_{n+1}^2$. Soit $a \in \mathbb{R}$.

On a:

$$\Phi(ag+h) = \left((ag+h)\left(\frac{k}{n}\right)\right)_{0 \le k \le n} = \left(ag\left(\frac{k}{n}\right) + h\left(\frac{k}{n}\right)\right)_{0 \le k \le n} = a\left(g\left(\frac{k}{n}\right)\right)_{0 \le k \le n} + \left(h\left(\frac{k}{n}\right)\right)_{0 \le k \le n} = a\Phi(g) + \Phi(h).$$

Donc l'application Φ est linéaire.

De plus, il est clair qu'une fonction g de E_{n+1} est entièrement caractérisée par les valeurs qu'elle prend aux points $\frac{k}{n}$ pour $k \in [0, n]$ donc Φ est bijective.

Plus précisément, soit $\alpha = (a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$.

L'unique antécédent de α par Φ est la fonction g_{α} définie sur [k/n, (k+1)/n] pour $k \in [0, n-1]$ par :

$$\forall x \in [k/n, (k+1)/n], \ g_{\alpha}(x) = n(a_{k+1} - a_k)x + (1+k)a_k - ka_{k+1} = (1+k-nx)a_k + (nx-k)a_{k+1}$$

(même preuve qu'à la question 3.).

On a encore $g_{\alpha}(1) = a_n$ et pour tout $x \in [0, 1[$:

$$g_{\alpha}(x) = (1 + \lfloor nx \rfloor - nx)a_{\lfloor nx \rfloor} + (nx - \lfloor nx \rfloor)a_{\lfloor nx \rfloor + 1}.$$

Φ est un isomorphisme et l'unique fonction $g_{\alpha} \in E_{n+1}$ telle que $\Phi(g_{\alpha}) = \alpha$ où $\alpha = (a_0, \dots, a_n) \in \mathbb{R}^{n+1}$ est la fonction définie sur [0,1] par $g_{\alpha}(1) = a_n$ et pour tout $x \in [0,1]$:

$$g_{\alpha}(x) = (1 + \lfloor nx \rfloor - nx)a_{\lfloor nx \rfloor} + (nx - \lfloor nx \rfloor)a_{\lfloor nx \rfloor + 1}$$

4.(b) Comme Φ est un isomorphisme, la famille $(f_j)_{0 \le j \le n}$ est une base de E_{n+1} si et seulement si la famille $(\Phi(f_j))_{0 \le j \le n}$ est une base de \mathbb{R}^{n+1} .

De plus, la famille $(\Phi(f_j))_{0 \le j \le n}$ est une base de \mathbb{R}^{n+1} si et seulement si la matrice M de cette famille dans la base canonique de \mathbb{R}^{n+1} est inversible.

Pour tout $j \in [0, n]$, la *i*ème coordonnée de $\Phi(f_j)$ dans la base canonique est $f_j(\frac{i}{n}) = \frac{|i-j|}{n}$.

On en déduit que $M = \frac{1}{n}A_{n+1}$.

On sait que la matrice A_{n+1} est inversible donc M est inversible.

Ainsi:

la famille
$$(f_j)_{0 \le j \le n}$$
 est une base de E_{n+1} .

4.(c) La famille $(f_j)_{0 \le j \le n}$ est une base de E_{n+1} et $g_\alpha \in E_{n+1}$ donc :

il existe
$$n+1$$
 réels $\lambda_0, \lambda_1, \ldots, \lambda_n$ tels que $g_\alpha = \sum_{k=0}^n \lambda_k f_k$ c'est-à-dire $\forall x \in [0,1], g_\alpha(x) = \sum_{k=0}^n \lambda_k f_k(x)$.

On a alors en appliquant l'application linéaire Φ :

$$\Phi(g_{\alpha}) = \sum_{k=0}^{n} \lambda_k \Phi(f_k)$$

puis en prenant les vecteurs-coordonnées dans la base canonique :

$$\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \frac{1}{n} A_{n+1} \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}.$$

Comme $B_{n+1} = A_{n+1}^{-1}$, on obtient :

$$\begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = nB_{n+1} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

On en déduit :

$$\begin{cases} \lambda_0 = \frac{1-n}{2}a_0 + \frac{n}{2}a_1 + \frac{1}{2}a_n \\ \lambda_k = \frac{n}{2}a_{k-1} - na_k + \frac{n}{2}a_{k+1} & \text{pour } 1 \le k \le n-1 \\ \lambda_n = \frac{1}{2}a_0 + \frac{n}{2}a_{n-1} + \frac{1-n}{2}a_n \end{cases}$$

5.(a) La fonction g définie à la question 3.a) est la fonction g_{α} pour :

$$\alpha = (f(0), f(\frac{1}{n}), f(\frac{2}{n}), \dots, f(\frac{n-1}{n}), f(1)).$$

On obtient donc avec l'expression obtenue en 4.c):

$$\forall k \in [1, n-1], \ \lambda_k = \frac{n}{2} f\left(\frac{k-1}{n}\right) - n f\left(\frac{k}{n}\right) + \frac{n}{2} f\left(\frac{k+1}{n}\right).$$

5.(b) Soit $x \in [0,1]$. En appliquant 3.(b) puis 2.(e), on a :

$$|f(x) - R(x)| \leq |f(x) - g(x)| + |g(x) - R(x)| \leq \varepsilon + \left| g_{\alpha}(x) - \sum_{k=0}^{n} \lambda_{k} Q_{N} \left(x - \frac{k}{n} \right) \right|$$

$$\leq \varepsilon + \left| \sum_{k=0}^{n} \lambda_{k} \left(f_{k}(x) - Q_{N} \left(x - \frac{k}{n} \right) \right) \right| \leq \varepsilon + \sum_{k=0}^{n} |\lambda_{k}| \left| \left| x - \frac{k}{n} \right| - Q_{N} \left(x - \frac{k}{n} \right) \right| \leq \varepsilon + \sum_{k=0}^{n} |\lambda_{k}| \frac{\varepsilon}{M} \leq 2\varepsilon$$

car pour tout $k \in [0, n], x - \frac{k}{n} \in [-1, 1].$

Ainsi:

$$\left| \sup_{x \in [0,1]} |f(x) - R(x)| \le 2\varepsilon.$$

5.(c) On a ainsi montré que pour tout $\varepsilon > 0$, il existe une fonction polynômiale R telle que $||f - R||_{\infty}^{[0,1]} \le 2\varepsilon$. Soit $n \in \mathbb{N}^*$. Pour $\varepsilon = \frac{1}{n} > 0$, il existe une fonction polynômiale R_n telle que $0 \le ||f - R_n||_{\infty}^{[0,1]} \le \frac{2}{n}$.

Comme $\lim_{n\to+\infty}\frac{1}{n}=0$, on a par encadrement, $\lim_{n\to+\infty}\|f-R_n\|_{\infty}^{[0,1]}=0$. Donc la suite polynômiale $(R_n)_{n\in\mathbb{N}^*}$ converge uniformément sur [0,1] vers la fonction f.

Ainsi, il existe une suite (R_n) de fonctions polynômiales convergeant uniformément vers f sur [0,1]. On a ainsi prouvé le théorème de Weierstrass et on a même déterminé explicitement une telle suite.

6. En faisant les opérations de l'énoncé, on obtient :

$$\det(A_{n+1}) = \begin{vmatrix} 0 & 1 & 2 & \cdots & n \\ 1 & 0 & 1 & \cdots & n-1 \\ 2 & 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 \\ n & \cdots & 2 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 2 & \cdots & n \\ 1 & -1 & -1 & \cdots & -1 \\ 1 & 1 & -1 & \ddots & -1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & \cdots & 1 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 2 & \cdots & n-1 & n \\ 1 & -2 & -2 & \cdots & -2 & -1 \\ 1 & 0 & -2 & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & -2 & -1 \\ 1 & 0 & \cdots & \cdots & 0 & -1 \end{vmatrix}$$

On remplace alors la colonne C_1 par la colonne $C_1 + C_{n+1}$, on obtient le déterminant d'une matrice triangulaire:

$$\det(A_{n+1}) = \begin{vmatrix} n & 1 & 2 & \cdots & n-1 & n \\ 0 & -2 & -2 & \cdots & -2 & -1 \\ 0 & 0 & -2 & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & -2 & -1 \\ 0 & 0 & \cdots & \cdots & 0 & -1 \end{vmatrix} = (-1)^n n 2^{n-1}.$$

On a $\det(A_{n+1}) = (-1)^n n 2^{n-1} \neq 0$ donc la matrice A_{n+1} est inversible.