Chapitre 9

Ensembles et applications

1 Ensembles

Soient A et B deux ensembles. Alors

- 1. On note $x \in A$ pour "x est un élément de A".
- 2. Soit E un ensemble. On note $\{x \in E \mid P(x)\}$ le sous-ensemble des éléments de E vérifiant la propriété P. Par exemple $\{x \in \mathbb{R} \mid x^2 > 2 \text{ et } x < 7\}$.

Définition 1.1

Soient A et B deux ensembles. L'ensemble A est inclu dans B (et on note $A \subset B$) si tout élément de A est un élément de B, i.e. : $\forall x \in A$, $x \in B$.

Méthode 1.2

Pour montrer qu'un ensemble A est inclu dans un ensemble B, on peut considérer un élément quelconque de A, et montrer qu'il est alors aussi dans B. Une telle démonstration commence toujours par "Soit $x \in A$. Montrons que $x \in B$."

Exemple.

Montrez que $\{x \in \mathbb{R} \mid x^2 < x\} \subset [0, 1]$.

Remarque.

Notez la différence d'écriture entre " $x \in A$ " et " $\{x\} \subset A$ ", mais ces deux affirmations sont équivalentes.

Proposition 1.3

Soient A et B deux ensembles. Alors $A = B \iff (A \subset B \text{ et } B \subset A)$.

Méthode 1.4 (Double-inclusion)

Pou montrer que deux ensembles A et B sont égaux, on peut procéder par double-inclusion : on montre que $A \subset B$, puis que $B \subset A$.

Exemple.

Montrez que $\{x \in \mathbb{R} \mid x^2 < x\} = [0, 1[$.

Définition 1.5

Soient E un ensemble et A, B deux sous-ensembles de E. On définit les ensembles suivants :

- 1. L'intersection $A \cap B = \{x \in E, x \in A \text{ et } x \in B\}.$
- 2. L'union $A \cup B = \{x \in E, x \in A \text{ ou } x \in B\}$.
- 3. Le complémentaire de A dans $E: \mathcal{C}_E A = \{x \in E, \ x \notin A\}$, ou encore \overline{A} lorsque l'ensemble E est évident.
- 4. La différence de A et $B: A \setminus B = A \cap C_E B = \{x \in E, x \in A \text{ et } x \notin B\} = \{x \in A, x \notin B\}.$

Méthode 1.6

Soient X, Y, Z trois ensembles.

- 1. Pour montrer que $X \cap Y \subset Z$, on montre que si $x \in X$ et $x \in Y$, alors $x \in Z$.
- 2. Pour montrer que $X \subset Y \cap Z$, on montre que $X \subset Y$ et $X \subset Z$, en montrant par exemple que si $x \in X$, alors $x \in Y$ et $x \in Z$.
- 3. Pour montrer que $X \cup Y \subset Z$, on montre que $X \subset Z$ et $Y \subset Z$.
- 4. Pour montrer que $X \subset Y \cup Z$, on peut raisonner par disjonction des cas de la façon suivante : on considère $x \in X$, et on montre que, si $x \notin Y$, alors $x \in Z$.
- 5. Pour montrer que $A \not\subset B$, on exhibe un $x \in A$ tel que $x \notin B$.

Proposition 1.7

 $\overline{Soit} \ A \subset E$. Alors $\overline{\overline{A}} = A$, où les complémentaires sont pris dans E.

Proposition 1.8

Soient A et B deux sous-ensembles de E. Alors

$$A \subset B \Longrightarrow \overline{B} \subset \overline{A}$$

où les complémentaires sont pris dans E.

Proposition 1.9

Soient A et B deux sous-ensembles de E. Alors $A \setminus B = A \setminus A \cap B$.

Proposition 1.10 (Associativité)

Soient E un ensemble et A, B, C trois sous-ensembles de E. Alors

$$A \cup (B \cup C) = (A \cup B) \cup C,$$
 $A \cap (B \cap C) = (A \cap B) \cap C.$

Proposition 1.11 (Distributivité)

Soient E un ensemble et A, B, C trois sous-ensembles de E. Alors

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Proposition 1.12 (Lois de De Morgan)

Soient E un ensemble et A, B deux sous-ensembles de E. Alors

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \qquad \overline{A \cap B} = \overline{A} \cup \overline{B},$$

où les complémentaires sont pris dans E.

Méthode 1.13

- 1. Pour montrer que $x \notin A \cap B$, on montre que $x \notin A$ ou $x \notin B$. On utilisera pour cela le raisonnement par disjnction des cas, en raisonnant ainsi : "Supposons que $x \in A$. Montrons qu'alors $x \notin B$ ".
- 2. Pour montrer que $x \notin A \cup B$, on montre que $x \notin A$ et $x \notin B$.

Définition 1.14 (Produit cartésien)

1. Soient A et B deux ensembles. Le produit cartésien de A et B est l'ensemble

$$A \times B = \{(a, b), \ a \in A, \ b \in B\}$$

avec la propriété fondamentale que pour $(a,b),(a',b')\in A\times B,$ on a

$$(a,b) = (a',b') \iff a = a' \text{ et } b = b'.$$

2. Soient $n \in \mathbb{N}^*$ et A_1, \ldots, A_n des ensembles. Le produit cartésien de A_1, \ldots, A_n est l'ensemble

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n), \forall i = 1, \dots, n, a_i \in A_i\},\$$

avec la propriété fondamentale que pour $(a_1,a_2,\ldots,a_n),(b_1,\ldots,b_n)\in A_1\times\cdots\times A_n,$ on a

$$(a_1, a_2, \dots, a_n) = (b_1, \dots, b_n) \iff \forall i = 1, \dots, n, \ a_i = b_i.$$

Remarque.

Un élément d'un produit cartésien $A_1 \times \cdots \times A_n$ est un *n-uplet*.

Définition 1.15 (Ensemble des parties d'un ensemble)

Soit E un ensemble. On note $\mathcal{P}(E)$ l'ensemble des parties de E, i.e. l'ensemble dont les éléments sont les sous-ensembles de E, i.e.

$$A \in \mathcal{P}(E) \iff A \subset E.$$

Proposition 1.16

- 1. Soit E un ensemble. Alors $\emptyset \in \mathcal{P}(E)$ et $E \in \mathcal{P}(E)$.
- $2. \quad \mathcal{P}(\emptyset) = \{\emptyset\}.$

Exemple.

Si $E = \{a, b, c\}$ est un ensemble à trois éléments, on a

$$\mathcal{P}(E) = \Big\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, E\Big\}.$$

2 Fonctions

2.1 Définitions

Définition 2.1

Une application (ou fonction) f est la donnée :

- 1. d'un ensemble de départ E.
- 2. d'un ensemble d'arrivée F.
- 3. pour tout élément $x \in E$, d'un unique élément de F appelé image de x par f, et noté f(x).

Dans ce cas, f est une fonction de E dans F et on note $\begin{picture}(1,0) \put(0,0){\line(0,0){10}} \put(0,0){\line(0,0)$

Remarques.

- 1. On note $\mathcal{F}(E,F)$ ou F^E l'ensemble des fonctions de E dans F.
- 2. Attention : si on change l'ensemble de départ, ou d'arrivée, on change de fonction, même si l'expression de l'image reste la même.
- 3. Tout élément de E admet une unique image par f.
- 4. Un élément de F n'admet pas nécessairement d'antécédent par f, cf la notion de surjectivité.
- 5. Un élément de F peut avoir plusieurs antécédents par f (et même une infinité), cf. la notion d'injectivité.

Définition 2.2 (Graphe d'une fonction)

Le graphe de la fonction f est l'ensemble

$$\{(a,b) \in E \times F, \ b = f(a)\} = \{(a,f(a)) \in E \times F\} \subset E \times F.$$

Définition 2.3 (Restriction, prolongement)

Soient E, F deux ensembles, $f \in F^E, A$ un sous-ensemble de E, et G un ensemble contenant E.

- 1. La restriction de f à A est la fonction $f_{|A}: A \longrightarrow F$ $x \longmapsto f(x)$.
- 2. Un prolongement de f à G est une fonction $g: G \longrightarrow F$ telle que, pour tout $x \in E$, g(x) = f(x).

2.2 Exemples

Définition 2.4 (Application identité)

Soit E un ensemble. L'application identit'e de E est la fonction $id_E: E \longrightarrow E$ $a \longmapsto a.$

Proposition 2.5

Soient E, F deux ensembles et $f \in F^E$. Alors $\mathrm{id}_f \circ f = f$ et $f \circ \mathrm{id}_E = f$.

Définition 2.6 (Fonction indicatrice)

Soit E un ensemble et $A \subset E$. La fonction indicatrice de A est la fonction

$$1_A: E \longrightarrow \{0,1\}
x \longmapsto \begin{cases}
1 & \text{si } x \in A \\
0 & \text{sinon.}
\end{cases}$$

Proposition 2.7

Soit E un ensemble et $A, B \in \mathcal{P}(E)$. Alors $A = B \iff \mathbb{1}_A = \mathbb{1}_B$.

Proposition 2.8

Soit E un ensemble et $A, B \in \mathcal{P}(E)$. On a

$$\begin{split} \mathbb{1}_{\overline{A}} &= 1 - \mathbb{1}_{A}, \\ \mathbb{1}_{A \cap B} &= \mathbb{1}_{A} \times \mathbb{1}_{B}, \\ \mathbb{1}_{A \cup B} &= \mathbb{1}_{A} + \mathbb{1}_{B} - \mathbb{1}_{A \cap B} \end{split}$$

2.3 Image directe, image reciproque

Définition 2.9 (Image directe, image reciproque)

Soient E et F deux ensembles, $f: E \longrightarrow F$.

1. Soit A un sous-ensemble de E. L'image directe de A par f est le sous-ensemble de F

$$f(A) = \{b \in F, \exists a \in A, b = f(a)\} = \{f(a), a \in A\} \subset F,$$

i.e. l'ensemble des images par f de tous les éléments de A.

2. Soit B un sous-ensemble de F. L'image réciproque de B par f est le sous-ensemble de E

$$f^{-1}(B) = \{ a \in E, \ f(a) \in B \} \subset E,$$

i.e. l'ensemble de tous les antécédents par f des éléments de B, ou encore l'ensemble des éléments de E dont l'image par f est dans B.

Définition 2.10 (Image d'une application)

Soient E et F deux ensembles, $f \in F^E$. L'image Im(f) de f est l'image directe de E par F: Im(f) = f(E).

Remarques.

- 1. La notation $f^{-1}(B)$ ne sous-entend pas du tout que la fonction f est bijective. Ce n'est qu'une notation.
- 2. Si $b \in F$, et f n'est pas bijective, la notation $f^{-1}(b)$ n'a aucun sens. Seul $f^{-1}(\{b\})$ a un sens.

Proposition 2.11

- 1. Soient $A, A' \subset E$ tels que $A \subset A'$. Alors $f(A) \subset f(A')$.
- 2. Soient $B, B' \subset F$ tels que $B \subset B'$. Alors $f^{-1}(B) \subset f^{-1}(B')$.

Proposition 2.12

Soient A, A' des sous-ensembles de E, et B, B' des sous-ensembles de F, et $f: E \longrightarrow F$. Alors

$$f(A \cup A') = f(A) \cup f(A'), \qquad f(A \cap A') \subset f(A) \cap f(A'),$$

$$A \subset f^{-1}\Big(f(A)\Big), \qquad f\Big(f^{-1}(B)\Big) \subset B,$$

$$f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B'), \qquad f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B').$$

Exemples.

1. Si $E = \mathbb{R}$, $A = [-\pi/3, \pi/4]$ et $A' = [0, \pi/2]$, on a

$$\cos(A \cap A') = \cos\left(\left[0, \frac{\pi}{4}\right]\right) = \left]\frac{\sqrt{2}}{2}, 1\right],$$

et

$$\cos(A) \cap \cos(A') = \left[\frac{1}{2}, 1\right] \cap [0, 1] = \left[\frac{1}{2}, 1\right].$$

2. Avec des graphes!!!

Méthode 2.13

Soient E et F deux ensembles, $f: E \longrightarrow F$, $A \subset E$ et $B \subset F$.

- 1. Pour déterminer l'image directe de A, on considère $y \in F$. On résout alors l'équation y = f(x) d'inconnue $x \in A$. Si l'équation a au moins une solution, alors $y \in f(A)$. Sinon, $y \notin f(A)$.
- 2. En particulier, pour déterminer l'image de f, on résout l'équation y = f(x) d'inconnue $x \in E$.
- 3. Pour déterminer l'image réciproque de B, on considère $x \in E$. On calcule f(x), et on cherche une cns sur x pour que $f(x) \in B$.

2.4 Cas particuliers des fonctions $\mathbb{R} \longrightarrow \mathbb{R}$

Méthode 2.14 (Image d'un intervalle par une fonction continue)

1. Soit f une fonction continue sur un segment [a, b] $(a, b \in \mathbb{R}, a \leq b)$. Alors $f([a, b]) = [\min(f), \max(f)]$.

2. Soit f une fonction continue sur un intervalle I de \mathbb{R} . Alors

$$f(I) = \begin{cases} [\inf_I(f), \sup_I(f)] & \text{si } \inf_I(f), \sup_I(f) \text{ sont atteints} \\]\inf_I(f), \sup_I(f)] & \text{si } \sup_I(f) \text{ est atteint et pas } \inf_I(f) \\ [\inf_I(f), \sup_I(f)[& \text{si } \inf_I(f), \sup_I(f) \text{ est atteint et pas } \sup_I(f) \\]\inf_I(f), \sup_I(f)[& \text{si } \inf_I(f), \sup_I(f) \text{ ne sont pas atteints} \end{cases}$$

Exemples.

- 1. Avec des graphes et des patates.
- 2. L'image réciproque de l'intervalle [0,1] par la fonction sinus est $\bigcup_{k\in\mathbb{Z}}[2k\pi,\pi+2k\pi]$.
- 3. L'image réciproque de l'intervalle [2, 3] par la fonction cosinus hyperbolique est $\left[-\ln(3+2\sqrt{2}), -\ln(2+\sqrt{2}), \ln(2+\sqrt{3}), \ln(3+2\sqrt{2})\right]$.
- 4. L'image directe de l'intervalle $\left[\ln(2+\sqrt{3}), \ln(3+2\sqrt{2})\right]$ par la fonction cosinus hyperbolique est l'intervalle [2,3].
- 5. $f(x) = x^2 2x + 3$: image de f et $f^{-1}([3, 4])$.

3 Injectivité, surjectivité, bijectivité

Définition 3.1

Soient E, F deux ensembles et $f: E \longrightarrow F$.

- 1. La fonction f est injective si tout élément de F admet au plus un antécédent par f.
- 2. La fonction f est surjective si tout élément de F admet au moins un antécédent par f.
- 3. La fonction f est bijective si tout élément de f admet un et un seul antécédent par f.

Proposition 3.2

Soient E, F deux ensembles et $f: E \longrightarrow F$.

- 1. La fonction f est injective si pour tous $a, a' \in E$, on a $f(a) = f(a') \Longrightarrow a = a'$.
- 2. La fonction f est surjective si Im(f) = F.

Proposition 3.3 (Équation b = f(a))

Soient E, F deux ensembles et $f: E \longrightarrow F$.

1. La fonction f est injective si, pour tout $b \in F$, l'équation b = f(a) d'inconnue $a \in E$ admet au plus une solution.

- 2. La fonction f est surjective si pour tout $b \in F$, l'équation b = f(a) d'inconnue $a \in E$ admet au moins une solution.
- 3. La fonction f est bijective si pour tout $b \in F$, l'équation b = f(a) d'inconnue $a \in E$ admet une et une seule solution.

Définition 3.4 (Fonction réciproque)

Soient E, F deux ensembles et $f: E \longrightarrow F$ une fonction bijective. La fonction $F \longrightarrow E$ qui à $b \in F$ associe son unique antécédent $a \in E$ par f est la fonction réciproque de f et est notée f^{-1} .

Remarque.

Lorsqu'on étudie une fonction de \mathbb{R} dans \mathbb{R} (ou de ses sous-ensembles), les solutions de l'équation b = f(a) se trouvent facilement avec un graphique. Ce sont (si elles existent), les abscisses des points d'intersections de la courbe représentative de f avec la droite horizontale d'équation y = b.

Exemples.

- 1. Avec des graphes!!!
- 2. Exemples d'utilisation $f(x) = f(y) \Longrightarrow x = y$, de surjectivité, de résolution d'équation y = f(x).
- 3. $f(x) = x^2 2x + 3$.

Proposition 3.5

Une fonction à valeurs réelles, définie sur une partie de \mathbb{R} et strictement monotone, est injective.

Proposition 3.6

La composition de deux applications injectives (respectivement surjective) est injective (respectivement surjective).

Définition 3.7

Soient E, F deux ensembles et $f: E \longrightarrow F$ une bijection. La bijection réciproque de f est la fonction $F \longrightarrow E$ qui à $b \in F$ associe son unique antécédent par f. On la note f^{-1} .

Proposition 3.8

Soient E, F deux ensembles et $f: E \longrightarrow F$ une bijection. Alors

- 1. $\forall (x,y) \in E \times F, \ y = f(x) \iff x = f^{-1}(y).$
- 2. $\forall x \in E, f^{-1}(f(x)) = x$, ou encore $f^{-1} \circ f = \mathrm{id}_E$.
- 3. $\forall y \in F$, $f(f^{-1}(y)) = y$, ou encore $f \circ f^{-1} = \mathrm{id}_F$.
- 4. $\forall y \in F, f^{-1}(\{y\}) = \{f^{-1}(y)\}.$

Proposition 3.9

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux bijections. Alors $g \circ f$ est une bijection et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Exemple.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par

$$\forall x \in \mathbb{R}, \ f(x) = x^2 - 2x + 3.$$

Cette fonction est-elle sujective? Injective? Déterminez le ou les antécédents de $b \in \mathbb{R}$.

Commencez par étudier cette fonction, et tracer son graphe. On remarque alors que f n'est pas surjective. En effet, on a $f(x) \ge f(1) = 2$, donc si b < 2, b n'a pas d'antécédent.

Étudions maintenant une éventuelle injectivité de la fonction. Soit $b \ge 2$. La fonction f est injective si et seulement si l'équation b = f(a) d'inconnue $a \in \mathbb{R}$ admet au plus une équation (le cas b < 2 ne doit plus être traité puisqu'il n'y a pas de solution). Le discriminant réduit vaut

$$1 - (3 - b) = b - 2$$
,

donc l'équation admet une unique solution pour b = 2, et deux solutions distinctes pour b > 2, donc la fonction n'est pas injective. On avait bien entendu déjà remarqué le résultat sur le graphe de f.

On peut remarquer que la fonction $f: \mathbb{R} \longrightarrow [2, +\infty[$ est surjective. En effet, on vient de montrer que l'équation f(x) = b a toujours une solution si $b \ge 2$.

De plus, la fonction $f: [1, +\infty[\longrightarrow \mathbb{R} \text{ est injective. En effet, l'équation } b = f(a)$ admet au plus une solution $a \ge 1$, puisque si $b \ge 2$, les deux solutions (réelles) sont $1 \pm \sqrt{b-2}$, et seule $1 + \sqrt{b-2}$ est plus grande que 1.

Enfin, la fonction $h: [1, +\infty[\longrightarrow [2, +\infty[$ est bijective. En effet, l'injectivité découle de l'étude précédente. Mais les antécédents de $b \ge 2$ par f sont $1 \pm \sqrt{b-2}$, et comme $1 + \sqrt{b-2} \ge 1$, b admet toujours un antécédent dans $[1, +\infty]$, donc h est surjective.

Déterminons sa fonction réciproque. D'après ce qui précède, si $b \ge 2$, son unique antécédent ≥ 1 est $1 + \sqrt{b-2}$, donc $h^{-1}: [2, +\infty[\longrightarrow [1, +\infty[$ est définie par

$$h^{-1}(y) = 1 + \sqrt{y - 2}$$

pour tout $y \geqslant 2$.

Proposition 3.10 (Caractérisation d'une bijection)

Soient E, F deux ensembles, et $f: E \longrightarrow F$ une fonction. S'il existe une fonction $g: F \longrightarrow E$ telle que $f \circ g = \mathrm{id}_F$ et $g \circ f = \mathrm{id}_F$, alors f est bijective et $f^{-1} = g$.

Exemple.

Attention : il faut les deux égalités de l'énoncé. Par exemple, soient f et g les fonctions définies pour $x \in \mathbb{R}$ par

$$f(x) = \begin{cases} x & \text{si } x \leq 0, \\ x - 1 & \text{sinon,} \end{cases} \qquad g(x) = \begin{cases} x & \text{si } x \leq 0, \\ x + 1 & \text{sinon,} \end{cases}.$$

On a $f \circ g = \mathrm{id}_{\mathbb{R}}$ (vérifiez-le!!), mais f et g ne sont pas bijectives (pourquoi?? Prouvez-le!!).

Méthode 3.11 (Déterminez si une fonction est bijective, et déterminez f^{-1})

Soit $f: E \longrightarrow F$ une fonction.

1. Pour déterminer si f est bijective, on fixe $y \in F$, et on résout l'équation y = f(x) d'inconnue $x \in E$. Si, pour tout y, l'équation admet une et une seule solution, f est bijective. Sinon, elle ne l'est pas.

2. Si f est bijective, $f^{-1}(y)$ est l'unique solution de l'équation précédente.

Méthode 3.12 (Cas particulier des fonctions de $\mathbb R$ dans $\mathbb R$)

Soit f une fonction définie sur un intervalle I de \mathbb{R} , à valeurs dans un intervalle I.

- 1. Si f est strictement monotone, elle est injective (attention : réciproque fausse si f n'est pas continue).
- 2. Si f est continue, pour la surjectivité, on peut utiliser la méthode 2.14 qui permet de déterminer l'image de f.
- 3. On peut aussi utiliser la méthode 3.11.

4 Relations d'équivalence et d'ordre

4.1 Relations binaires

Définition 4.1 (Relation binaire)

Soit E un ensemble. Une relation binaire \mathcal{R} sur E est une propriété définie sur $E \times E$, *i.e.* sur les couples d'éléments de E, qui peut être soit vraie, soit fausse. Losqu'un couple $(x, y) \in E^2$ vérifie la relation \mathcal{R} , on note $x\mathcal{R}y$.

Exemple.

La relation " $x^2 + y - 2 = 0$ " est une relation binaire sur \mathbb{R} , et par exemple $1\mathcal{R}3$.

Définition 4.2

Soit \mathcal{R} une relation binaire définie sur un ensemble E. Elle est

- 1. réflexive si, pour tout $x \in E$, xRx.
- 2. symétrique si, pour tout $(x, y) \in E^2$, $x \mathcal{R} y \Longrightarrow y \mathcal{R} x$.
- 3. antisymétrique si, pour tout $(x, y) \in E^2$, $x \mathcal{R} y$ et $y \mathcal{R} x \Longrightarrow x = y$.
- 4. transitive si, pour tout $(x, y, z) \in E^3$, $x \mathcal{R} y$ et $y \mathcal{R} z \Longrightarrow x \mathcal{R} z$.

Remarque.

Si une relation est à la fois symétrique et antisymétrique, la relation binaire est triviale, puisque si $x, y \in E$, et $x \mathcal{R} y$, alors par symétrie $y \mathcal{R} x$, donc par antisymétrie, x = y.

Exemples.

- 1. La relation " $x^2+y-2=0$ " est une relation binaire sur \mathbb{R} , ni réflexive, ni transitive, ni symétrique, ni antisymétrique.
- 2. La relation " $x^2 + y^2 = 1$ " est une relation binaire symétrique sur \mathbb{R} , mais ni transitive, ni réflexive, ni antisymétrique.

3. La relation "xy > 0" est une relation binaire symétrique, réflexive et transitive sur \mathbb{R}^* .

4.2 Relations d'équivalence

Définition 4.3 (Relation d'équivalence)

Une relation d'équivalence sur un ensemble E est une relation binaire réflexive, transitive et symétrique. On note alors, pour $(x, y) \in E^2$, $x \sim y$ au lieu de $x\mathcal{R}y$.

Exemples.

- 1. L'équivalence " \iff " est une relation d'équivalence sur l'ensemble des propositions logiques.
- 2. La relation "xy > 0" est une relation d'équivalence sur \mathbb{R}^* .

Définition 4.4 (Classe d'équivalence)

Soit \sim une relation d'équivalence sur un ensemble E, et $x \in E$. La classe d'équivalence de x pour la relation \mathcal{R} est le sous-ensemble de E des éléments en relation avec x. On la note Cl(x). On a donc : $Cl(x) = \{y \in E, x \sim y\}$.

Exemples.

- 1. Pour la relation d'équivalence " \iff " sur l'ensemble des propositions logiques, il n'y a que deux classes d'équivalences : les propositions vraies, et les fausses.
- 2. Pour la relation "xy > 0" sur \mathbb{R}^* , il n'y aussi que deux classes d'équivalences : les réels > 0 d'un côté, les réels < 0 de l'autre.

Proposition 4.5

Soit \sim une relation d'équivalence sur un ensemble E, et $(x,y) \in E^2$.

- 1. Si $x \sim y$, alors Cl(x) = Cl(y).
- 2. Si $x \nsim y$, alors $Cl(x) \cap Cl(y) = \emptyset$.

Définition 4.6 (Partition)

Une partition de E est une famille de sous-ensembles non vides de E, deux à deux disjoints, dont l'union est E.

Proposition 4.7

Soit E un ensemble muni d'une relation d'équiuvalence. Les classes d'équivalences correspondantes forment une partition de E.

Définition 4.8 (Congruence modulo un réel dans \mathbb{R})

Soit $a \in \mathbb{R}$. Deux réels x et y sont congrus modulo a s'il existe $k \in \mathbb{Z}$ tel que x - y = ka. On note alors $x \equiv y \mod a$.

Proposition 4.9

Soit $a \in \mathbb{R}$. La relation "congruence modulo a" est une relation d'équivalence sur \mathbb{R} . De plus, si $x \in \mathbb{R}$, alors $Cl(x) = \{x + ka, k \in \mathbb{Z}\}$.

Définition 4.10 (Congruence modulo un entier dans \mathbb{Z})

Soit $a \in \mathbb{Z}$. Deux entiers x et y sont congrus modulo a s'il existe $k \in \mathbb{Z}$ tel que x - y = ka, i.e. si a divise x - y. On note alors $x \equiv y \mod a$.

Proposition 4.11

Soit $a \in \mathbb{Z}$. La relation "congruence modulo a" est une relation d'équivalence sur \mathbb{Z} . De plus, si $x \in \mathbb{Z}$, alors $Cl(x) = \{x + ka, k \in \mathbb{Z}\}$.

4.3 Relations d'ordre

Définition 4.12 (Relation d'ordre)

Une relation d'ordre sur un ensemble E est une relation binaire réflexive, transitive et antisymétrique. Pour $(x, y) \in E^2$, on note alors en général $x \prec y$ au lieu de $x\mathcal{R}y$.

Définition 4.13 (Ordre total, partiel)

Soit \mathcal{R} une relation d'ordre sur un ensemble E. Cet ordre est dit total si pour tout $(x,y) \in E^2$, $x \prec y$ ou $y \prec x$. L'ordre est dit partiel sinon.

Exemples.

- 1. La relation " \leq " dans $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$. C'est un ordre total.
- 2. Attention: "<" n'est pas une relation d'ordre, car elle n'est pas réflexive.
- 3. La relation d'inclusion dans $\mathcal{P}(E)$, où E est un ensemble non vide. C'est une relation d'ordre. En effet, si A, B, C sont trois sous-ensembles de E, on a bien $A \subset A$, et si $A \subset B$ et $B \subset A$, alors A = B, et enfin si $A \subset B$ et $B \subset C$, alors $A \subset C$.
- 4. L'ordre alphabétique sur l'ensemble des lettres de l'alphabet. C'est un ordre total.
- 5. L'ordre lexicograpique sur \mathbb{R}^2 : $(a,b) \prec (a',b') \iff a < a'$ ou $(a=a' \text{ et } b \leqslant b')$. C'est un ordre total. (C'est l'ordre du dictionnaire!)

Définition 4.14 (Majorants, minorants, plus grand élément, plus petit élément)

Soit E un ensemble muni d'une relation d'ordre, et A un sous-ensemble de E.

1. Un majorant de A est un élément $M \in E$ tel que

$$\forall a \in A, a \prec M.$$

2. Un minorant de A est un élément $m \in E$ tel que

$$\forall \ a \in A, \ m \prec a.$$

3. Le plus grand élément de A, s'il existe, est un élément $M_0 \in A$ tel que,

$$\forall a \in A, a \prec M_0.$$

on le note $\max(A)$.

4. Le plus petit élément de A, s'il existe, est un élément $m_0 \in A$ tel que,

$$\forall a \in A, m_0 \prec a.$$

on le note min(A).

Remarques.

- 1. Ces définitions ne présument pas de l'existence de majorants, minorants, et à plus forte raison de plus grand et plus petit élément.
- 2. Le plus grand élément est un majorant, et le plus petit élément est un minorant.
- 3. Rappelons qu'un sous-ensemble non vide de N est majoré si et seulement s'il est fini.
- 4. Tout sous-ensemble fini non vide de \mathbb{R} admet un plus petit et un plus grand élément.
- 5. Le plus grand élément de A, s'il existe, est un majorant de A qui est dans A.

Proposition 4.15

Soit A un sous-ensemble non vide d'un ensemble ordonné E. Si A admet un plus grand élément (resp. plus petit élément), celui-ci est unique.

Exemples.

- 1. \mathbb{N} et \mathbb{R} n'admettent pas de majorant. Par contre, \mathbb{N} admet un plus petit élément (0), mais \mathbb{R} n'en admet pas.
- 2. $[0,1] \subset \mathbb{R}$: 1 et le plus grand élément, il n'y a pas de plus ptit élément, mais -2 et un minorant.
- 3. Si E est un ensemble, et $\mathcal{P}(E)$ est muni de l'ordre induit par l'inclusion, E est le plus grand élément de $\mathcal{P}(E)$, et \emptyset le plus petit.

Méthode 4.16

Soient E un ensemble ordonné, A un sous-ensemble de E, et $m, M \in E$.

- 1. Pour montrer que $M = \max(A)$, on montre que $M \in A$ et que M majore A.
- 2. Pour montrer que $m = \min(A)$, on montre que $m \in A$ et que m minore A.

Proposition 4.17

Soit A un sous-ensemble non vide d'un ensemble ordonné E.

1. Si A admet un plus grand élément, on a pour $M \in E$,

$$\forall a \in A, a \prec M \iff \max(A) \prec M,$$

i.e. M majore A si et seulement si M majore $\max(A)$.

2. Si A admet un plus petit élément, on a pour $m \in E$,

$$\forall a \in A, m \prec a \iff m \prec \min(A),$$

i.e. M minore A si et seulement si M minore min(A).

Remarque.

Un cas particulier très fréquent est le suivant : soient $n \in \mathbb{N}^*$, et $(x_i)_{1 \le n}$ une famille de réels. Comme cette famille est finie, elle admet un plus grand et un plus petit élément. On en déduit que si $x \in \mathbb{R}$, alors

$$\forall i = 1, \dots, n, \ x \geqslant x_i \iff x \geqslant \max(x_1, \dots, x_n)$$

et

$$\forall i = 1, \dots, n, \ x \leqslant x_i \iff x \leqslant \min(x_1, \dots, x_n).$$