La Terre est assimilée à une sphère de centre O, de rayon R = 6370 km et de masse volumique $\rho = 2800$ kg.m⁻³ La température à l'intérieur de la Terre est une fonction décroissante de la coordonnée sphérique radiale r. La température à la surface de la Terre est $T_0 = 290$ K. On se place ne régime permanent. La conduction est le seul mode de transfert thermique envisagé et la conductivité thermique de la Terre est $\lambda = 4$ W.m⁻¹.K⁻¹.

Dans cette modélisation simplifiée, on définit deux zones :

- du centre de la Terre jusqu'à la limite de la lithosphère en $r_m = 6280$ km, il n'y a aucune source de production de chaleur.
- dans la lithosphère, c'est-à-dire pour $r_m \le r \le R$, on tient compte de la source de chaleur que constitue la radioactivité d'éléments comme l'uranium. Ces sources radioactives dégagent dans la lithosphère une puissance thermique par unité de masse constante $H = 5.10^{-10} \text{ W.kg}^{-1}$.
- a-Calculer le flux thermique Φ à travers une sphère de rayon $r < r_m$. Quelle propriété possède ce flux ? En déduire le profil de température T(r) dans cette zone en fonction de deux constantes A et B. Quelle condition aux limites permet de déterminer la valeur de l'une d'elles ? Quelle est la signification de l'autre ? Commenter les résultats $j_O(r)$ et T(r) obtenus dans cette zone. On note $T(r=0) = T_C$ la température du centre.
- b-Pour l'étude de la lithosphère, procéder à un bilan d'énergie pour établir l'équation de diffusion thermique à une dimension en coordonnées cartésiennes pour la température T(x). On admet que la structure de cette
 - équation est inchangée en coordonnées sphériques en remplaçant le laplacien $\frac{d^2T}{dx^2}$ par $\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right)$.
- c-En déduire la température T(r) dans la lithosphère en fonction de deux constantes d'intégration C et D.
- d-Quelles sont les conditions aux limites de la lithosphère ? Exprimer C et D en fonction de T_0 , R, r_m , ρ , H et λ .
- e-Tracer l'allure de T(r) puis calculer numériquement la température au centre T_C ainsi que le gradient de température dT/dr en $K.km^{-1}$ à la surface de la Terre.
- f-Exprimer le flux thermique total Φ en surface de la Terre en fonction de la puissance radioactive et faire l'application numérique. En déduire le flux surfacique φ .

3.3 Diffusion thermique-Exercice 10

$$a - \Phi = \iint_{\text{sphère}} \vec{j}_Q(r) . d\vec{S}$$
 donne : $\Phi = j_Q(r) . 4\pi r^2$

Il se conserve, donc ne dépend pas de r, en régime permanent et en l'absence de source interne.

Avec la loi de Fourier : $\Phi = -\lambda \frac{dT}{dr} 4\pi r^2$ Equation du type : $\frac{dT}{dr} = -\frac{A}{r^2}$

La température doit rester <u>finie</u> au centre de la Terre donc <u>A = 0</u>. On a alors <u>B = T(r=0) = T_C</u> Finalement: $T(r) = T_c$ et $j_Q(r) = 0$. Température uniforme et pas de diffusion thermique pour $0 \le r \le r_m$

b-Système: tranche de solide de section S, comprise entre x et x+dx

<u>Premier principe au système entre t et t+dt</u> : $dU = \delta Q$ « entrant » + δQ « créée »

En régime stationnaire dU = 0, d'où en divisant par $dt : 0 = \Phi_{\text{«entrant »}} + P_{\text{«créée »}}$

On a:
$$\Phi_{\text{ « entrant »}} = \Phi_{\text{ « entrant » en x}} + \Phi_{\text{ « entrant » en x+dx}} = j_Q(x).S - j_Q(x+dx).S = -\frac{dj_Q}{dx}Sdx = \lambda \frac{d^2T}{dx^2}Sdx$$

 $P_{\text{« créée »}} = Hdm = H\rho Sdx$

D'où:
$$\frac{d^2T}{dx^2} = -\frac{\rho H}{\lambda}$$

D'où :
$$\frac{d^2T}{dx^2} = -\frac{\rho H}{\lambda}$$
 En passant en coordonnées sphériques : $\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = -\frac{\rho H}{\lambda}$

$$c - \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = -\frac{\rho H}{\lambda} r^2 \qquad \text{s'intègre en} : r^2 \frac{dT}{dr} = -\frac{\rho H}{3\lambda} r^3 - C$$

$$Puis: \frac{dT}{dr} = -\frac{\rho H}{3\lambda}r - \frac{C}{r^2} \text{ s'intègre en : } T(r) = -\frac{\rho H}{6\lambda}r^2 + \frac{C}{r} + D$$

d-Conditions aux limites:

- $continuit\'e \ du \ flux \ thermique \ en \ r = r_m : \ j_Q(r_m) = 0 \quad soit \left(\frac{dT}{dr}\right)\!(r = r_m) = 0 \quad d'o\`u \quad \left| \ C = -\frac{\rho H}{3\lambda} \, r_m^3 \right| = 0 \quad d'o\'u = 0$
- continuité de la température en r = R : $T(R) = T_0$ donne $D = T_0 + \frac{\rho H}{6\lambda} R^2 + \frac{\rho H}{3\lambda R} r_m^3$

e-A.N :
$$C = -2.89.10^{13} \text{ K.m}$$

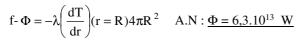
 $D = 6.90.10^6 \text{ K}$

On a :
$$T_c = T(r=r_m) = -\frac{\rho H}{6\lambda} r_m^2 + \frac{C}{r_m} + D$$

 $A.N : T_c = 1421^{\circ}C$

On a:
$$\left(\frac{dT}{dr}\right)(r=R) = -\frac{\rho HR}{3\lambda} - \frac{C}{R^2}$$

A.N:
$$\left(\frac{dT}{dr}\right)(r=R) = -3.1.10^{-2} \text{ K.m}^{-1} = -31 \text{ K.km}^{-1}$$



$$\phi = \frac{\Phi}{4\pi R^2}$$
 A.N: $\phi = 0.12 \text{ W.m}^{-2}$

