
3.4 Rayonnement thermique-Exercice 1

On étudie l'effet de serre produit par l'interposition d'une vitre au-dessus d'une plaque qui reçoit le rayonnement solaire. La plaque est noircie et assimilée à un corps noir. Le verre est supposé totalement transparent au rayonnement solaire.

La vitre est en revanche totalement absorbante pour le rayonnement infra-rouge émis par la plaque qui absorbe le rayonnement solaire.

On désigne par φ_S le flux solaire surfacique supposé arriver normalement à la vitre et à la plaque.

a-On suppose l'équilibre radiatif de la plaque et de la vitre.

Ecrire les équations exprimant ces équilibres et en déduire la température T de la plaque.

A.N : ϕ_S = 0,6 kW.m⁻² ; constante de Stefan σ = 5,67.10⁻⁸ W.m⁻².K⁻⁴ . Calculer T et la température T_1 de la vitre.

b-Reprendre la question précédente dans le cas de deux vitres.

Rappel: • Loi de Stefan: $\varphi_e = \sigma T^4$ (W.m⁻²) • Loi de Wien: $\lambda_{moyen}.T = 3000 \,\mu\text{m.K}$

a-La plaque reçoit les flux surfaciques φ_S et φ_1 . Elle émet le flux φ_{CN} .

A l'équilibre : $\phi_S + \phi_1 = \phi_{CN}$

La vitre reçoit le flux ϕ_{CN} . Elle émet le flux ϕ_1 de chaque coté.

A l'équilibre : $2\phi_1 = \phi_{CN}$

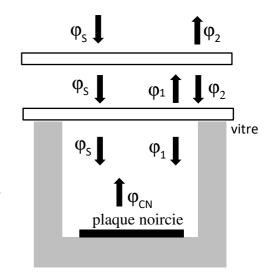
On en déduit :
$$\phi_s = \frac{\phi_{CN}}{2}$$
 avec $\phi_{CN} = \sigma T^4 = T = \left(\frac{2\phi_S}{\sigma}\right)^{1/4}$

A.N :
$$T = 381 \text{ K}$$

Puis:
$$\phi_1 = \frac{\phi_{CN}}{2}$$
 avec $\phi_1 = \sigma T_1^4 = T_1 = \left(\frac{T^4}{2}\right)^{1/4}$ A.N: $\underline{T_1 = 320 \text{ K}}$

b-Equilibre de la plaque : $\phi_S + \phi_1 = \phi_{CN}$

Equilibre de la vitre 1 : $2\phi_1 = \phi_{CN} + \phi_2$


Equilibre de la vitre 2 : $\varphi_1 = 2\varphi_2$

On en déduit :
$$\varphi_s = \frac{\varphi_{CN}}{3}$$

D'où:
$$T = \left(\frac{3\phi_S}{\sigma}\right)^{1/4}$$

A.N: T = 422 K

La température de la plaque augmente avec le nombre de vitres.

