Le Soleil (rayon R_s , température de surface T_s) et la Terre (rayon R_T , température de surface T_T) sont assimilés à des corps noirs. Ils sont séparés d'une distance D. La Terre est constituée de roches radioactives qui dégagent une puissance thermique volumique p par les réactions nucléaires.

On se place en régime permanent et on néglige l'influence de l'atmosphère.

Données : R_s = 6,96.10⁸ m ; R_T = 6400 km ; D = 1,5.10¹¹ m ; T_s = 6000 K ; p = 3.10⁻⁶ W.m⁻³ constante de Stefan σ = 5,67.10⁻⁸ W.m⁻².K⁻⁴ .

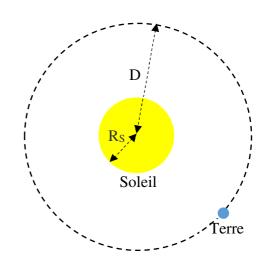
a-Exprimer la puissance P_s rayonnée par le Soleil.

b-Par un bilan énergétique, déterminer la température T_T.

c-Calculer T_T et la longueur d'onde λ_T du rayonnement émis par la Terre. Situer cette longueur d'onde dans le spectre électromagnétique.

Rappel: • Loi de Stefan: $\varphi_e = \sigma T^4$ (W.m⁻²) • Loi de Wien: $\lambda_{moyen}.T = 3000 \ \mu m.K$

a-La puissance surfacique rayonnée par le Soleil assimilé à un corps noir est : σT_s^4


La puissance totale rayonnée est donc : $P_s = 4\pi R_s^2 . \sigma T_s^4$

b-Cette puissance se répartit dans l'espace. La puissance surfacique sur la sphère de rayon D est :

$$\frac{P_{\rm s}}{4\pi D^2} = \sigma T_{\rm s}^4 \left(\frac{R_{\rm s}}{D}\right)^2$$

La puissance reçue par la Terre en provenance du Soleil est :

$$P_{\text{reque par rayonnement}} = \sigma T_s^4 \left(\frac{R_s}{D}\right)^2 . \pi R_T^2$$

Bilan de puissance pour la Terre en régime stationnaire :

 $P_{\text{\'emise par rayonnement}} = P_{\text{reçue par radioactivit\'e}} + P_{\text{reçue par rayonnement}}$

$$4\pi R_{T}^{2}\sigma T_{T}^{4}=p\frac{4}{3}\pi R_{T}^{3}+\sigma T_{s}^{4}\bigg(\frac{R_{s}}{D}\bigg)^{2}.\pi R_{T}^{2}$$

D'où :
$$T_{T} = \left[\frac{pR_{T}}{3\sigma} + \left(\frac{R_{s}}{2D}\right)^{2} T_{s}^{4}\right]^{1/4}$$

c-A.N : $\underline{T_T} = 290 \text{ K}$; $\underline{\lambda_T} = 10 \mu\text{m}$ (infra-rouge)